
The Eikonal Equation

Computing Invariances

Steerability property

We extend Equivariant Neural Fields

Grid-free, scalable travel-time prediction on homogeneous spaces

Equivariant Eikonal Neural Networks

We extend the moving frame method 
to product of distinct manifolds by 
augmenting the space with learnable 
group elements 

This makes non-free actions free and 
gives us a complete and maximally 
expressive set of independent 
invariants!

Unlocking equivariant neural 
fields on: 

• Product manifolds 
• Non-transitive actions

When you transform the conditioning 
variables the travel-time solution 
transforms predictably too!  

Solving for one velocity field 
automatically gives you solutions for 
its entire orbit

We need expressive invariants 
for our architecture

We get steerability if and only if  

Instead of a global latent vector    , Equivariant Neural Fields are conditioned by  
cross-attention on a point cloud of pose-context tuples:                                    ,              , 

    is obtained by optimizing it using gradient descent on a PINN loss of the Eikonal Equation 

Amsterdam
Machine Learning Lab

Hybrid

IntelligenceH

Alejandro García-Castellanos, David R. Wessels, Nicky J. van den Berg,  
Remco Duits, Daniël M. Pelt, Erik J. Bekkers

∥ grads T(s, r)∥𝒢 = v(s)−1,
∥ gradr T(s, r)∥𝒢 = v(r)−1,
T(s, r) = T(r, s), T(s, s) = 0,

On a Riemannian manifold , the two-point Riemannian Eikonal equation 
with respect to a velocity field  (where ) 
is:

(ℳ, 𝒢)
v : ℳ → [vmin, vmax] 0 < vmin ≤ vmax < ∞

where  and  denote the Riemannian gradients with 
respect to the source  and the receiver , 
respectively

grads gradr
s ∈ ℳ r ∈ ℳ

The solution  corresponds to the 
travel-time function, i.e., the minimum time to travel 
from source to receiver given the velocity map

T : ℳ × ℳ → ℝ+

Ex: How long it would take to go from Spain to Estonia if we go at the 
maximum speed allowed at each moment?

Original Methods

Experiments

Table 1: Performance comparison on OpenFWI datasets against FC-DeepONet. Colours denote Best,
Second best, and Third best performing setups for each dataset. Fitting time represents the total
computational time required to fit the latent conditioning variables for all 100 testing velocity fields.

E-NES

FC-DeepONet Autodecoding (100 epochs) Autodecoding (convergence) Meta-learning

Dataset RE (→) Fitting (s) RE (→) Fitting (s) RE (→) Fitting (s) RE (→) Fitting (s)

FlatVel-A 0.00277 ↑ 0.615 0.00952 223.31 0.00506 1120.25 0.01065 5.92
CurveVel-A 0.01878 ↑ 0.615 0.01348 222.72 0.00955 1009.67 0.02196 5.91
FlatFault-A 0.00514 ↑ 0.615 0.00857 222.61 0.00568 1014.45 0.01372 5.92
CurveFault-A 0.00963 ↑ 0.615 0.01108 222.89 0.00820 1123.90 0.02086 5.92
Style-A 0,03461 ↑ 0.615 0.01034 222.00 0.00833 1117.99 0.01317 5.92

FlatVel-B 0.00711 ↑ 0.615 0.01581 222.74 0.00860 1010.32 0.02274 5.91
CurveVel-B 0.03410 ↑ 0.615 0.03203 222.97 0.02250 1127.87 0.03583 5.90
FlatFault-B 0.04459 ↑ 0.615 0.01989 222.70 0.01568 1133.98 0.03058 5.93
CurveFault-B 0.07863 ↑ 0.615 0.02183 222.89 0.01885 893.84 0.03812 5.89
Style-B 0.03463 ↑ 0.615 0.01171 221.90 0.01069 896.06 0.01541 5.90

5 Experiments

We evaluate Equivariant Neural Eikonal Solvers (E-NES) on the 2D OpenFWI benchmark [Deng
et al., 2022] and extend our analysis to 3D settings to assess scalability and spherical geometry to
show its generalization capabilities. Implementation details are provided in the Appendix (Section D).
The code, including the experiments, is provided in the previously-mentioned public repository.

5.1 Benchmark on 2D-OpenFWI

Following Mei et al. [2024], we utilize ten velocity field categories from OpenFWI: FlatVel-A/B,
CurveVel-A/B, FlatFault-A/B, CurveFault-A/B, and Style-A/B, each defined on a 70↓ 70 grid. We
train E-NES on 500 velocity fields per category and evaluate on 100 test fields, positioning four
equidistant source points at the top boundary and computing travel times to all receiver coordinates.
Additional evaluations using a denser 14↓14 source grid are presented in the Appendix (Section E.2).

Performance is quantified using relative error (RE) and relative mean absolute error (RMAE):

RE :=
1

Ns

Ns∑

i=1

√√√√
∑Mp

j=1 |T
i
j ↔ T̂ i

j |

∑Mp

j=1 |T
i
j |

2
, RMAE :=

1

Ns

Ns∑

i=1

∑Mp

j=1 |T
i
j ↔ T̂ i

j |

∑Mp

j=1 |T
i
j |

,

where Ns represents the total number of samples, Mp denotes the total number of evaluated source-
receiver pairs, T i

j indicates the j-th point of the i-th ground truth travel time, and T̂ represents the
model’s predicted travel times. The ground truth values are generated using the second-order factored
Fast Marching Method [Treister and Haber, 2016].

5.1.1 Impact of Steerable Geometric Conditioning

Figure 2: Comparative analysis of equivariant con-
ditioning variables on the Style-B dataset. For
non-equivariant models Z ↑= Rc, while equivari-
ant models use Z = SE(2)↓ Rc.

To empirically validate the theoretical benefits
of equivariance in our formulation, we con-
ducted a controlled ablation study comparing
E-NES with equivariance (Z = SE(2) ↓ Rc)
against a variant without equivariance con-
straints (Z ↑= Rc) on the Style-B dataset. Fig-
ure 2 illustrates consistent performance advan-
tages with equivariance, demonstrated by lower
values in both Eikonal loss and mean squared er-
ror (MSE) throughout the training process. This
empirical validation substantiates our theoreti-
cal motivation for incorporating explicit equiv-
ariance constraints into the model architecture.

8

����� ����� ����� 	�	�	 
�
�

�����������������������

�

�

�

�

	



��
��

���
��
�
�
�

����

������

�
����

�
������


�$�$� �$�$� 	$	$	 
$
$
 �$�$�
��# �������"!�� ���!�%�

�

�

�

�

�



��

�#
"�

"��
��

��
�
��
��
��
�
�!
� ���

������� ����
�����"
��������� ����
�������"

������ "������ ���!�����! ������ ������ ������� 
����! �������

��


���

��


���

��


	��

	�


���

���

���

���

��	

��


���

���

���

���

���

���

��	

��


���

���

�����


������

�����


������

�����


������ "������ ���!�����! ������ ������ ������� 
����! �������

���

��


���

��


	��

	�


���

���

��	

���

���

���

���

��	

���

���

�����

����	

�����

�����

�����

�����

����	

������ "������ ���!�����! ������ ������ ������� 
����! �������

��


���

��


���

��


	��

���

���

���

���

��	

��


���

���

���

���

���

���

��	

��


���

���

����


�����

����


�����

����


������!#������ ���"�����"!������ ������!������� �� ��"!�������

��


���

��


���

��


	��

	�


���

���

��	

���

��


���

���

���

��	

���

��


���

�����


����
�

�����


������

�����


����
�

�����


������!#������ ���"�����"!������ ������!������� �� ��"!�������

���

��


���

��


	��

���

���

��	

���

��


���

���

��	

���

��


�����


����
�

�����


������

�����


����
�

�����


������!#������ ���"�����"!������ ������!������� �� ��"!�������

���

��


���

��


	��

���

���

��	

���

��


���

���

��	

���

��


�����


����
�

�����


������

�����


����
�

� � � � � 	 

�

�

�

�

�

�

��������������������������������
����

� � � � 	 
 �

�

�

�

�

�

 

������
�����������������������������

Constant Velocity Field

1

2

3

4

5

6

7

8

9

10

Ve
lo

ci
ty

 F
ie

ld

Gaussian Obstacle Velocity Field

Figure 4: Geodesic path planning on the sphere using gradient integration of the travel-time function
under two velocity fields. Left panels show the trajectories in local polar coordinates, while right
panels visualize the corresponding paths on the spherical surface. The constant velocity field (top)
yields a great-circle path, whereas the Gaussian obstacle velocity field (bottom) causes the trajectory
to bend around the low-speed region. The diamond ( ↭) denotes the start and the circle (!) the goal.

5.3 Generalizability to Non-Euclidean Domains

Table 3: Performance of our method on Eikonal
solvers over the 2-sphere.

Dataset RE (→) RMAE (→) Fitting Time (s)

Constant Speed 0.013 0.012 209.2
Spherical Style-B 0.015 0.012 207.1

We validate the generality of our framework
on the 2-sphere, i.e., on S2 ↑ R3, with SO(2)
steerability (rotations about the z-axis). This
setting demonstrates two key capabilities: (i)
handling non-transitive Lie group actions, and
(ii) extending to non-Euclidean geometries.

We test on two velocity field types: constant
speed fields with velocities uniformly sampled, and Spherical Style-B fields, obtained by projecting
OpenFWI’s 2D Style-B fields onto the sphere via spherical coordinates. As shown in Table 3, our
method achieves strong performance on both benchmarks, effectively learning the sphere’s intrinsic
geometry and correctly modeling wavefront propagation despite using Euclidean chordal distance
d̃(s, r) in the factorized representation (as described in Section 3.2).

Moreover, Figure 4 demonstrates that E-NES enables geodesic path planning via gradient integration,
yielding optimal trajectories under configurations with and without obstacles. Additional details on
how to perform this path-finding task are provided in the Appendix C.2.

6 Discussion and Future Work

In this work, we proposed a systematic approach to incorporate equivariance into neural fields
and demonstrated its effectiveness through our Equivariant Neural Eikonal Solver (E-NES). Our
experiments show that E-NES outperforms both Neural Operator methods (e.g., FC-DeepONet) and
Conditional Neural Field approaches (e.g., Functa) across most benchmark datasets. The grid-free
formulation is particularly advantageous for gradient integration tasks and naturally extends to
Riemannian manifolds.

While our method requires explicit optimization at test time, FC-DeepONet’s encoder forward pass
performs implicit latent fitting (0.615 seconds for 100 velocity fields, as indicated in Table 1). Criti-
cally, our test-time optimization enables practitioners to dynamically adjust the accuracy-efficiency
trade-off by varying the number of iterations (Appendix E.5). This adaptability parallels recent test-
time optimization advances in large language models [Zhang et al., 2025], whereas FC-DeepONet’s
performance is fixed post-training. Additional comparative analyses are provided in Appendix F.1.

For future work, we plan to extend our analysis to homogeneous spaces beyond Euclidean and
spherical domains, including position-orientation spaces for systems with nonholonomic constraints
(e.g., vehicle path planning) and hyperbolic spaces for hierarchical interpolation tasks.

10

• E-NES with full autodecoding beats FC-DeepONet on 7/10 datasets. 
• Even with meta-learning (fast but less expressive), we still outperform SOTA in 4 challenging 

cases while achieving 100x speedup: ~1000s → <6s per velocity field

We validate our approach through applications in seismic travel-time modeling 
of 2D and 3D benchmark datasets 

• We can extend to 3D while maintaining stable error metrics across increasing grid dimensions.  
• In contrary to Fast Marching Method, we don’t need for finer discretization as problems get 

larger thanks to E-NES continuous representation 

We can perform geodesic path planning via Riemannian SGD over , 
yielding optimal trajectories under configurations with and without obstacles 

grads T(s, r)

Fast Marching Method (FMM) 

• Bad memory and computation scalability 

• Requires discretization 

Physics-Informed Neural Networks (PINNs): encode eikonal 
equation into loss function 

• Separate network for each solution → Memory 
inefficient  

• Not sharing knowledge between solutions → Training 
inefficient 

Neural Operators: share a common backbone across solutions 
and condition on velocities profiles 

• Naive conditioning variables → Inefficient adaptability 

• Current approaches are not fully grid free

(a) Gradient color

(b) T (x) = 1 (c) T (x) = 5 (d) T (x) = 10

Figure 8: Fast marching with multiple sources.

Figure 9: Comparison mesh (→ 300 000 darts).

mentioning obvious optimisation improvements, the
development of these rules in Jerboa is quite straight-
forward as Jerboa is handling boilerplate develop-
ments (to store, access, and maintain consistency of
the data, or visualize the results). This methodology
allows to focus on the algorithm and to easily explore
variants in future works (unstructured mesh in arbi-
trary dimension).

4.7 Fast Marching on Regular Volume
Grids

As g-maps are defined homogeneously in any dimen-
sion, this allows us to realize a unique fast marching
rule for both 2D and 3D regular orthogonal grids, see
Figure 10. Moreover, for regular grids this implemen-
tation extends to any desired dimension. Obviously,
for all dimensions, the velocity field can be variable
to add local zones where the front velocity is strongly
penalized.

Figure 10: Same unique rule is used to apply fast marching
on 2D and 3D orthogonal regular grids.

4.8 Fast Marching and Contour
Detection

As a playful application, fast marching can find the
shortest path in a maze, see Figure 11. For this pur-
pose, a 2-dimensional grid was created, on which we
have assigned a vertex of the g-map to each pixel of
the maze image. The front velocity on a vertex is pro-
portional to the intensity of the corresponding pixel
(black pixel = low velocity). Once the g-map is set
with the appropriate velocities, fast marching is ap-
plied until the chosen destination point is reached. We
then backtrack from the destination to the source by
selecting the shortest local distance value at each step.

5 CONCLUSION AND
PERSPECTIVES

This work provides g-maps as a data structure for the
fast marching algorithm to add abstraction with the
view to be able to apply this algorithm in unstructured
meshes in arbitrary dimension. G-maps also allow the

(a) Gradient color

(b) T (x) = 1 (c) T (x) = 5 (d) T (x) = 10

Figure 8: Fast marching with multiple sources.

Figure 9: Comparison mesh (→ 300 000 darts).

mentioning obvious optimisation improvements, the
development of these rules in Jerboa is quite straight-
forward as Jerboa is handling boilerplate develop-
ments (to store, access, and maintain consistency of
the data, or visualize the results). This methodology
allows to focus on the algorithm and to easily explore
variants in future works (unstructured mesh in arbi-
trary dimension).

4.7 Fast Marching on Regular Volume
Grids

As g-maps are defined homogeneously in any dimen-
sion, this allows us to realize a unique fast marching
rule for both 2D and 3D regular orthogonal grids, see
Figure 10. Moreover, for regular grids this implemen-
tation extends to any desired dimension. Obviously,
for all dimensions, the velocity field can be variable
to add local zones where the front velocity is strongly
penalized.

Figure 10: Same unique rule is used to apply fast marching
on 2D and 3D orthogonal regular grids.

4.8 Fast Marching and Contour
Detection

As a playful application, fast marching can find the
shortest path in a maze, see Figure 11. For this pur-
pose, a 2-dimensional grid was created, on which we
have assigned a vertex of the g-map to each pixel of
the maze image. The front velocity on a vertex is pro-
portional to the intensity of the corresponding pixel
(black pixel = low velocity). Once the g-map is set
with the appropriate velocities, fast marching is ap-
plied until the chosen destination point is reached. We
then backtrack from the destination to the source by
selecting the shortest local distance value at each step.

5 CONCLUSION AND
PERSPECTIVES

This work provides g-maps as a data structure for the
fast marching algorithm to add abstraction with the
view to be able to apply this algorithm in unstructured
meshes in arbitrary dimension. G-maps also allow the

Toujja et. al. 2023  

KWWSV���TU�FRGHV�O�'�2K

6&$1�0(

ℳ1 × ⋯ × ℳm × G

Group action at each manifold


