Experiments

Equivariant Eikonal Neural Networks S ments

Grid-free, scalable travel-time prediction on homogeneous spaces of 2D and 3D benchmark datasets

e E-NES with full autodecoding beats FC-DeepONet on 7/10 datasets.
e Even with meta-learning (fast but less expressive), we still outperform SOTA in 4 challenging
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2 is obtained by optimizing it using gradient descent on a PINN loss of the Eikonal Equation o

where grad, and grad, denote the Riemannian gradients with

respect to the source s € ./ and the receiverr € /, e
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e We can extend to 3D while maintaining stable error metrics across increasing grid dimensions.

The solution T': ./ X M/ — R, corresponds to the

travel-time function, i.e., the minimum time to travel ‘
from source to receiver given the Velocity map e When you tranSform the Conditioning Latents Travel-Tlme VelOCity Field

variables the travel-time solution
transforms predictably too!
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Ex: How long it would take to go from Spain to Estonia if we go at the Solution to

maximum speed allowed at each moment?

Solving for one velocity field

automatically gives you solutions for

* In contrary to Fast Marching Method, we don't need for finer discretization as problems get
its entire orbit

larger thanks to E-NES continuous representation

We get steerability if and only if =& ADRE 7 4] W FMM
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Physics-Informed Neural Networks (PINNs): encode eikonal Sottion 1o Source points grid size Source points grid size
equation into loss function -
* Separate network for each solution = Memory We can perform geodesic path planning via Riemannian SGD over grad, T(s, r),

inefficient yielding optimal trajectories under configurations with and without obstacles

Solution to We extend the moving frame method K — {(pl7 e D g) EM XXM XG:g= e}
to product of distinct manifolds by

augmenting the space with learnable

Not sharing knowledge between solutions — Training
inefficient

Polar Coords: Constant Velocity Field
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Neural Operators: share a common backbone across solutions

and condition on velocities profiles

This makes non-free actions free and

a
e Naive conditioning variables — Inefficient adaptability j gives us a complete and maximally
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Current approaches are not fully grid free P P

invariants!
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Unlocking equivariant neural
fields on:
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