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Motivation and related work
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The eikonal equation

On a Riemannian manifold (/, &), the two-point Riemannian Eikonal equation with

respect to a velocity field v : A — [V, i Viax] (Where O < v_. < v . < 00) 1S:

| grad, T(s, )llg = v(s)~",
I grad, T(s, Nlly = v(r)~",
1(s,r) =T1(r,s), 1(s,s) =0,

where grad, and grad, denote the Riemannian gradients with respect to the source
s € M and the receiver r € ., respectively.

The solution T: M X M — R, corresponds to the travel-time function, and the
interval [v_. ., v .. | specifies the minimum and maximum velocity values 1n the
training set.

1n?




UNIVERSITY OF AMSTERDAM
X

Where can I use the eikonal equation?

Computer Vision Seismology Robotics

Geodesic Segmentation Travel-time predictions Motion-planing

Velocity Field L5 Ground Truth Time

4.0

3.5

3.0

Sign Distance Functions Ray-tracing Inverse kinetics

Segmentation Figure from: Da Chen and Laurent D. Cohen. From Active Contours to Minimal Geodesic Paths: New Solutions to Active Contours Problems by Eikonal Equations, 2019.
Robotics Figure from: Ruigi Ni and Ahmed H. Qureshi. NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning, March, 2023.
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f current eikonal solvers
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* Requires discretization

NN

FMM Figure from: Sofian Touijja, Thierry Bay, Hakim Belhaouari, Laurent Fuchs. Topological Data Structure: The Fast Marching Example.
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[_Limitations ot current eikonal solvers

» (lassical: Fast Marching Method (FMM)

* Bad memory and computation scalability

Solution to

— >

* Requires discretization

e Neural solvers:

* Physics-Informed Neural Networks (PINNs): encode eikonal equation
into loss function

Solution to “
aAL

» Separate network for each solution — Memory 1nefficient
* Not sharing knowledge between solutions — Training inefficient

Solution to

— >
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[_Limitations ot current eikonal solvers
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» (lassical: Fast Marching Method (FMM)

* Bad memory and computation scalability

|

* Requires discretization

e Neural solvers:

* Physics-Informed Neural Networks (PINNs): encode eikonal equation
into loss function

» Separate network for each solution — Memory 1nefficient

* Not sharing knowledge between solutions — Training inefficient

* Neural Operators: share a common backbone across solutions and
condition on velocities profiles

* Naive conditioning variables — Inefficient adaptability

L)

>

» Current approaches are not fully grid free

EVAEATY
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Conditional Neural Fields perspective

4 ™  Physics
Unconditional constraints

Neural Fields
\ Y,

Sifan Wang, Jacob H. Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris Perdikaris. Bridging Operator Learning and Conditioned Neural Fields: A Unifying Perspective, 2024.
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Conditional Neural Fields perspective

21 s | 1 - ™ Physics

/ o Unconditional | constraints
Neural Fields
\ " | )

29 T Conditioning Conditioning
/ e l ~  Physics l B
T~ Conditional constraints Neural

Neural Fields Operators
<3 Ty | - J j

Sifan Wang, Jacob H. Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris Perdikaris. Bridging Operator Learning and Conditioned Neural Fields: A Unifying Perspective, 2024.
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Research question

Which are the benefits of framing neural
eikonal solvers as conditional neural fields?
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From Conditional to Equivariant Neural Fields

Given a dataset & = {f;}'_, of continuous signals

f.: M — RY each signal f; can be associated with a \
latent code z; such that a single network ) o
fo: M XZE — R? can represent the entire dataset: © @09 o 7
fop:2) = fi(p), for all f; € 2 80 o0 6

@ © ©
Conditioning via a learnable point cloud /

{z}2, CZ enhances expressivity and
reconstruction fidelity
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From Conditional to Equivariant Neural Fields
\

Given a dataset & = {f.}'_; of continuous signals o o
f.: M — RY each signal f; can be associated with a © 09 o f
latent code z; such that a single network © © @@@ © g
fo: M XZE — R? can represent the entire dataset: @ @ 4
Jo(p3z) = f(p), forallf € & I / |
Conditioning via a learnable point cloud {g © Zi fio fe(g_l * P; {Zz‘ 211)
{z}2, CZ enhances expressivity and \l,
reconstruction fidelity
o | @ “® T
Equivariant Neural Fields encode the Steerability © O
property under a group G: © © ©6 © fo
® o @ 5

fog™" - pi{zYiy) = fy(ps {g - }iLy), forallg € G . @J _—
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More on Equivariant Neural Fields

* The steerability of Equivariant Neural Fields can be achieved 1f and only 1f the function 1s
invariant with respect to transformations of both input and latent variables:

fg-pilg-z)it) =fp;{g)t) VegeG
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More on Equivariant Neural Fields

* The steerability of Equivariant Neural Fields can be achieved 1f and only 1f the function 1s
invariant with respect to transformations of both input and latent variables:

fg-pilg-z)it) =fp;{g)t) VegeG

» We introduce a conditioning variable, represented as a geometric point cloud z = {(g;, ¢;) }',
» g, € (G 1sreferred to as a pose

« ¢; € RYis referred to as a context vector

» We will denote the space of pose-context pairs as the product manifold Z = G X RY, so that z
is an element of the power set LP(Z)

» This representation naturally supports a G-group action defined by g -z = {(g - g:, €) } 7=
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Steerability on eikonal solvers
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Steerability on eikonal solvers

Proposition 4.1 (Steered Eikonal Solution). Let Ty : M x M x P (Z) — R, be a conditional
neural field satisfying the steerability property (2), and let z; be the conditioning variable representing
the solution of the eikonal equation for v; : M — R*, i.e., Ty(s,r; z;) = Ti(s,r) for T} satisfying
Equation (1) for the velocity field v;. Let G9 be a g-steered metric (Definition gﬂ[) Then:

1. Themap p: G X (M = R%) = (M — RY) defined by

_ _ ~1
,u(g,vl)(s) = ||gra'dg—1s T'l(g t. Sy, g t. T)”gga (3)
where r is an arbitrary point in M, is a well-defined group action.

2. Forany g € G, Ty(s,r; g - z1) solves the eikonal equation with velocity field 1.(g, v;).

Definition 4.1 (g-steered metric). For all g € G, define the g-steered metric G9 : TM X TM — R
as:

G (1,7) :== Ggp ((dLg-l(g -p))*lu), (dLy-1(g p))*[v]) forp e M, and u,v € T, M,
where L,-1 : M — M is the diffeomorphism defined by L,-1(p) = g t-p.
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Steerability on eikonal solvers

[sometries Conformal

2.0 -
1.5 1
u(g,v)(s) = Qg, ) v(g~' - 5)if G
acts conformally on .Z with 1.0
conformal factor €2(g, s) > O .
0.0

5 4-3-2-10 1 2 3 4 5
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Equivariant Neural Eikonal Solver (E-NES)

1. Factored eikonal equation: 7 (s, r;z) = d(s, r) To(S, 13 2)
o d(s, r) is an approximation of the Riemannian distance

» Avoids irregular behavior as r — s
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Equivariant Neural Eikonal Solver (E-NES)

1. Factored eikonal equation: 7 (s, r;z) = d(s, r) To(S, 15 2)
o d(s, r) is an approximation of the Riemannian distance

» Avoids irregular behavior as r — s

2. Parametrizedas 7y = Po £
o E: M X MXDPF)— REadapts the invariant cross-attention encoder of Wessels et al. 2024

» P:R* > R, is the bounded projection head from Grubas et al. 2023

David R. Wessels, David M. Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstratios Gavves, and Erik J. Bekkers. Grounding Continuous Representations in Geometry:
Equivariant Neural Fields, 2024

Serafim Grubas, Anton Duchkov, and Georgy Loginov. Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics. 2023
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Invariant cross-attention encoder

E(s,r;z) = FFNg - o; v(a;, c; with o; = eXp(q(ai)Tk(ci)/\/éTk) ;
( ) (; ( )) t >, exp(q(a;) Tk(c;)/Vdk)

g(3) = W,a, k(c) = Wi LN(W.c),
v(a,c) = FFN, (W, LN(W.c) ® (1 + FEN,(a)) + FFNg(a)),

To enforce 74(s,;2) = 79(r, s;2), we use a; = (a,>" +a."*)/2
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Computation of Fundamental Joint-Invariants

Let G be a Lie group acting smoothly and regularly (but not necessarily freely)
on each Riemannian manifold #;viao,: GX M, — M, fori = 1,...,m, and K = {(p17 .
hence diagonally on

G(plr“apm)g)
M=y XXMy 58 (Prs--sPw) = (618 P15 -+ s 5u(8 D)) -
On the augmented space IT = IT X G, define (P1 -+ Pms 9)
g<ha (p19 °°°9pm9 g)) — (5(h9 (p]9 7pm))7 hg) .
Then:
_ (51(9_17291)7 '75m(g_1apm)7 6)

* 01s free. 1

3 Pmy9) =g

A moving frame is given by p : I — G, such that p(p;, ...,p,, &) = g 1.

o The set {5l-(g_1, pi)}’fn | forms a complete collection of functionally
1=

independent invariants of the action /.
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Results
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2D OpenFWI dataset: Empairical results
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2D OpenFWI dataset: Comparison vs. FC-DeepONet

Table 1: Performance comparison on OpenFWI datasets. Colours denote Best, Second best, and
Third best performing setups for each dataset.

E-NES

FC-DeepONet Autodecoding (100 epochs) Autodecoding (convergence) Meta-learning

Dataset RE (])  Fitting(s) RE () Fitting (s) RE () Fitting (s) RE (])  Fitting (s)
FlatVel-A 0.00277 - 0.00952 223.31 0.00506 1120.25 0.01065 5.92
CurveVel-A 0.01878 - 0.01348 222.772 0.00955 1009.67 0.02196 5.91
FlatFault-A 0.00514 - 0.00857 222.61 0.00568 1014.45 0.01372 5.92
CurveFault-A  0.00963 - 0.01108 222.89 0.00820 1123.90 0.02086 5.92
Style-A 0,03461 - 0.01034 222.00 0.00833 1117.99 0.01317 5.92
FlatVel-B 0.00711 : 0.01581 222.74 0.00860 1010.32 0.02274 5.91
CurveVel-B 0.03410 - 0.03203 222.97 0.02250 1127.87 0.03583 5.90
FlatFault-B 0.04459 - 0.01989 222.70 0.01568 1133.98 0.03058 5.93
CurveFault-B  0.07863 - 0.02183 222.89 0.01885 893.84 0.03812 5.89
Style-B 0.03463 - 0.01171 221.90 0.01069 896.06 0.01541 5.90

Yifan Mei, Yijie Zhang, Xueyu Zhu, Rongxi Gou, and Jinghuai Gao. Fully Convolutional Network- Enhanced DeepONet-Based Surrogate of Predicting the Travel-Time Fields. 2024.
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Ablation: Effect of equivariance

0.10 10-1-
Z == No Equivariant

" E === Equivariant
% .08 s
S >
E g
£ 0.06 -
- S

0.04 - .

0 500 1000 1500 0 500 1000 1500

Step (x1000) Step (x1000)

Figure 2: Comparative analysis of equivariant con-
ditioning variables on the Style-B dataset. For
non-equivariant models Z = R, while equivari-
ant models use Z = SFE(2) x R°.
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Conclusions

* Novel, expressive generalization of Equivariant Neural
Fields to functions defined over products of Riemannian
manifolds with regular group actions.

 Equivariant Neural Eikonal Solver (E-NES), efficiently
solve eikonal equations by leveraging geometric symmetries,
enabling generalization across group transformations
without explicit data augmentation.

* We validate our approach through comprehensive experiments
on 2D and 3D seismic travel-time benchmarks,

* Improved scalability,
* Improved adaptability

* Improved user controllability
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Appendix
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Bounded projection head

2. Bounded Velocity Projection. The encoder output h = E(s, r; z) passes through a second MLP
network FFN p with AdaptiveGauss activations to model sharp wavefronts and caustics [Grubas et al.,

2023]. The final output is projected into [1/vmax, 1/Vmin| bY:
1 1
P) = (

Umin Umax
where o 1s the sigmoid function and ag € R 1s a learnable temperature parameter.

)0’((10 FFNP(h)) | ! ]

Umax

Serafim Grubas, Anton Duchkov, and Georgy Loginov. Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics. 2023
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Tramning loss

Let V = {v; : M — [Unmin, Vmax] }1~; be our training set of K velocity fields over the domain M.
At each iteration, we sample a batch B with B velocity fields {v;}32., C V and Ny, source-receiver
pairs {(s; j,7s. J)}j\f:”i C M? for each v;. Let {2;};_, be the conditioning variables associated with
{v;}7_,, then we minimize a physics-informed loss that enforces the Hamilton-Jacobi equation
[Grubas et al., 2023]:
1 B Ngr
L0, {z}E.,, B) >3 (Jvilsi)ll grad, To(si g g )13 — 1

B Ny i=1 j=1 (5)

+ [vi(rs,5)? | erad, Ty(si g, i3 2013 — 1),
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Autodecoding algorithm

Algorithm 1 Autodecoding Training

Require: Velocity fields V = {vl}{il, epochs num_epochs, batch size B, pairs per field Ng,,
learning rate n
1: Randomly initialize shared base network 7§
2: Initialize latents z; < {(g;,c;)}.Y, for all velocity fields
3: for epochs = 1 to num_epochs do
while dataloader not empty do

Sample batch B = {(Si’j, T, 5, vi(si,j), U; (’l’i’j))}
Compute loss L(6, {2;}2 ,, B) (see Equation|5)
Update 0 < 0 — nVyL

Update each z; < z; — 0V, . L

9: end while

10: end for
Ensure: Trained 6 and latents {z;}* ,

B,N.,
i=1,j=1

XN R
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Meta-learning algorithm

Algorithm 2 Meta-learning Training

Require: Velocity fields V = {v;}{% ,, outer epochs num_epochs, inner steps S, batch size B, pairs
per field Ng,., learning rates 1y, NsGp
1: Initialize shared base network Ty (optionally pretrained), and learnable learning rate 7, .
2: for epochs = 1 to num_epochs do
3: while dataloader not empty do

4: Sample batch of velocity fields {v;}2., CV
5: Initialize latents z§0) for each v;
6: fort =1to S do > Inner loop: Update latents
7: Sample Ny, source-receiver pairs {(s( . ), z(tj 1))} " C M2, for each v;
8: Construct batch B¢~1) = {(s; (= 1), ,ft] D, vi(s; ( . )), z( (t 1)))}f3 ]1\{;-;1
9: Compute L (6, {z(t 1)}z 15 B(t 1)

10: Update each z( ) (t 2 — 1, vziZ

11: end for S

12: Sample N, source-receiver pairs {(s (’ ]), f J))} =1 C M?, for each v;

13: Construct batch B(S) = {(s{), 717 vi(s$2)), vi (ri ) )} 2o,

14: Compute Lynetqe(0) = (9 {z(s)}z L, BN

15: Update 6 < 6 — ny, VngetCL

16: Update Mz < Mz — 71sSGD Vnz Lmeta

17: end while

18: end for

Ensure: Trained 6
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3D OpenFWI dataset: Scalability analysis
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Ablation: Pretrained Meta-learning

- Style-A Vanilla

- ——— Style-A Pretrain
e 101 ——— CurveVel-A Vanilla
3 10-2 ) —— CurveVel-A Pretrain
5
g ||
- ) 1] 102 ‘
g S " T
U
"

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Step (x1000) Step (x1000)

Figure 5: Comparative analysis of meta-learning convergence with pretrained versus random 1nitial-
1zation on Style-A and CurveVel-A OpenFWI datasets.
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Full-grid 2D OpenFWI results

Table 2: Performance on OpenFWI datasets on a 14 x 14 grid of source points.

Autodecoding (100 epochs) Autodecoding (convergence) Meta-learning
Dataset RE({) RMAE({) Fitting(s) RE({) RMAE() Fitting(s) RE({) RMAE((]) Fitting (s)
FlatVel-A 0.01023  0.00827 223.31 0.00624  0.00509 1010.90 0.01304  0.01003 5.92
CurveVel-A 0.01438  0.01139 222772  0.01069  0.00841 1009.67 0.02460  0.01878 5.91
FlatFault-A 0.01050  0.00751 222.61 0.00744  0.00510 1014.45 0.01749  0.01255 5.92
CurveFault-A  0.01380  0.00976 222.839  0.01088  0.00745 1007.97  0.02471  0.01807 5.92
Style-A 0.00962  0.00785 222.00  0.00795  0.00646 783.13 0.01326  0.01036 5.92
FlatVel-B 0.01988  0.01586 22274  0.01178  0.00906 786.48 0.03077  0.02474 5.91
CurveVel-B 0.04291  0.03349 222.97 0.03297  0.02528 1010.70  0.04977  0.03930 5.90
FlatFault-B 0.01889  0.01413 22270  0.01557  0.01147 898.28 0.02998  0.02214 5.93
CurveFault-B  0.02244  0.01728 222.839  0.01991  0.01537 561.22  0.03824  0.02945 5.89

Style-B 0.01061  0.00860 22190  0.00984  0.00798 1120.09  0.01566  0.01227 5.90
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Ablation: Autodecoding steps
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