

UNIVERSITY OF AMSTERDAM

Equivariant Eikonal Neural Networks Grid-free, scalable travel-time prediction on homogeneous spaces

Alejandro García-Castellanos, David R. Wessels, Nicky J. van den Berg, Remco Duits, Daniël M. Pelt, Erik J. Bekkers

Take a picture to download the full paper

UNIVERSITY OF AMSTERDAM

Motivation and related work

The eikonal equation

On a Riemannian manifold $(\mathcal{M}, \mathcal{G})$, the two-point Riemannian *Eikonal equation* with respect to a velocity field $v : \mathcal{M} \to [v_{\min}, v_{\max}]$ (where $0 < v_{\min} \le v_{\max} < \infty$) is:

$$\begin{cases} \|\operatorname{grad}_{s} T(s, r)\|_{\mathscr{G}} = v(s) \\ \|\operatorname{grad}_{r} T(s, r)\|_{\mathscr{G}} = v(r) \\ T(s, r) = T(r, s), \quad T(s, r) \end{cases}$$

where $grad_s$ and $grad_r$ denote the Riemannian gradients with respect to the source $s \in \mathcal{M}$ and the receiver $r \in \mathcal{M}$, respectively.

The solution $T: \mathcal{M} \times \mathcal{M} \to \mathbb{R}_+$ corresponds to the travel-time function, and the interval $[v_{\min}, v_{\max}]$ specifies the minimum and maximum velocity values in the training set.

$$^{-1},$$

 $^{-1},$
 $(5) = 0,$

Where can I use the eikonal equation?

Computer Vision

Geodesic Segmentation

Sign Distance Functions

Segmentation Figure from: Da Chen and Laurent D. Cohen. From Active Contours to Minimal Geodesic Paths: New Solutions to Active Contours Problems by Eikonal Equations, 2019. Robotics Figure from: Ruiqi Ni and Ahmed H. Qureshi. NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning, March, 2023.

Seismology

Ray-tracing

Robotics

Motion-planing

Inverse kinetics

Limitations of current eikonal solvers

- **<u>Classical:</u>** Fast Marching Method (FMM)
 - Bad memory and computation scalability
 - Requires discretization

Limitations of current eikonal solvers

- <u>Classical:</u> Fast Marching Method (FMM)
 - Bad memory and computation scalability
 - Requires discretization
- <u>Neural solvers:</u>
 - **Physics-Informed Neural Networks (PINNs):** encode eikonal equation into loss function
 - Separate network for each solution \rightarrow Memory inefficient
 - Not sharing knowledge between solutions \rightarrow Training inefficient

Limitations of current eikonal solvers

- **<u>Classical:</u>** Fast Marching Method (FMM)
 - Bad memory and computation scalability
 - Requires discretization
- <u>Neural solvers:</u>
 - Physics-Informed Neural Networks (PINNs): encode eikonal equation into loss function
 - Separate network for each solution \rightarrow Memory inefficient
 - Not sharing knowledge between solutions \rightarrow Training inefficient
 - Neural Operators: share a common backbone across solutions and condition on velocities profiles
 - Naive conditioning variables \rightarrow Inefficient adaptability
 - Current approaches are not fully grid free

Conditional Neural Fields perspective

Sifan Wang, Jacob H. Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris Perdikaris. Bridging Operator Learning and Conditioned Neural Fields: A Unifying Perspective, 2024.

Conditional Neural Fields perspective

Sifan Wang, Jacob H. Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris Perdikaris. Bridging Operator Learning and Conditioned Neural Fields: A Unifying Perspective, 2024.

Research question

Which are the benefits of framing neural eikonal solvers as conditional neural fields?

From Conditional to Equivariant Neural Fields

Given a dataset $\mathcal{D} = \{f_i\}_{i=1}^n$ of continuous signals $f_i : \mathcal{M} \to \mathbb{R}^d$, each signal f_l can be associated with a latent code z_l such that a single network $f_{\theta} : \mathcal{M} \times \mathcal{Z} \to \mathbb{R}^d$, can represent the entire dataset: $f_{\theta}(p; z_l) \approx f_l(p)$, for all $f_l \in \mathcal{D}$

Conditioning via a learnable point cloud $\{z_i\}_{i=1}^m \subseteq \mathcal{X}$ enhances expressivity and reconstruction fidelity

From Conditional to Equivariant Neural Fields

Given a dataset $\mathcal{D} = \{f_i\}_{i=1}^n$ of continuous signals $f_i : \mathcal{M} \to \mathbb{R}^d$, each signal f_l can be associated with a latent code z_l such that a single network $f_{\theta} : \mathcal{M} \times \mathcal{Z} \to \mathbb{R}^d$, can represent the entire dataset: $f_{\theta}(p; z_l) \approx f_l(p)$, for all $f_l \in \mathcal{D}$

Conditioning via a learnable point cloud $\{z_i\}_{i=1}^m \subseteq \mathcal{Z}$ enhances expressivity and reconstruction fidelity

Equivariant Neural Fields encode the Steerability property under a group G:

 $f_{\theta}(g^{-1} \cdot p; \{z_i\}_{i=1}^m) = f_{\theta}(p; \{g \cdot z_i\}_{i=1}^m), \text{ for all } g \in G$

More on Equivariant Neural Fields

invariant with respect to transformations of both input and latent variables:

 $f(g \cdot p; \{g \cdot z_i\}_{i=1}^m) = f(p; \{z_i\}_{I=1}^m) \quad \forall g \in G$

• The steerability of Equivariant Neural Fields can be achieved if and only if the function is

More on Equivariant Neural Fields

invariant with respect to transformations of both input and latent variables:

- - $g_i \in G$ is referred to as a *pose*
 - $\mathbf{c}_i \in \mathbb{R}^d$ is referred to as a *context vector*
- is an element of the power set $\mathscr{P}(\mathscr{Z})$
- This representation naturally supports a G-group action defined by $g \cdot z = \{(g \cdot g_i, \mathbf{c}_i)\}_{i=1}^N$

• The steerability of Equivariant Neural Fields can be achieved if and only if the function is

 $f(g \cdot p; \{g \cdot z_i\}_{i=1}^m) = f(p; \{z_i\}_{I=1}^m) \quad \forall g \in G$

• We introduce a conditioning variable, represented as a geometric point cloud $z = \{(g_i, \mathbf{c}_i)\}_{i=1}^N$

• We will denote the space of pose-context pairs as the product manifold $\mathcal{Z} = G \times \mathbb{R}^d$, so that z

UNIVERSITY OF AMSTERDAM

Method

Steerability on eikonal solvers

Steerability on eikonal solvers

Proposition 4.1 (Steered Eikonal Solution). Let $T_{\theta} : \mathcal{M} \times \mathcal{M} \times \mathscr{P}(\mathcal{Z}) \to \mathbb{R}_+$ be a conditional neural field satisfying the steerability property (2), and let z_l be the conditioning variable representing the solution of the eikonal equation for $v_l : \mathcal{M} \to \mathbb{R}^*_+$, i.e., $T_{\theta}(s,r;z_l) \approx T_l(s,r)$ for T_l satisfying Equation (1) for the velocity field v_l . Let \mathcal{G}^g be a g-steered metric (Definition 4.1). Then:

1. The map $\mu: G \times (\mathcal{M} \to \mathbb{R}^*_+) \to (\mathcal{M}$ $\mu(g, v_l)(s) := \|\mathbf{g}\|$

where r is an arbitrary point in \mathcal{M} , is

Definition 4.1 (g-steered metric). For all $g \in G$, define the g-steered metric $\mathcal{G}^g : T\mathcal{M} \times T\mathcal{M} \to \mathbb{R}$ as:

 $\mathcal{G}_p^g(\dot{u},\dot{v}) := \mathcal{G}_{gp}\left((\mathrm{d}L_{g^{-1}}(g \cdot p))^*[\dot{u}], (\mathrm{d}L_{g^{-1}}(g \cdot p))^*[\dot{v}] \right) \quad \text{for } p \in \mathcal{M}, \text{ and } \dot{u}, \dot{v} \in T_p\mathcal{M},$ where $L_{q^{-1}}: \mathcal{M} \to \mathcal{M}$ is the diffeomorphism defined by $L_{q^{-1}}(p) = g^{-1} \cdot p$.

$$\mathcal{A} \to \mathbb{R}^*_+$$
 defined by
 $\operatorname{grad}_{g^{-1}s} T_l(g^{-1} \cdot s, g^{-1} \cdot r) \big\|_{\mathcal{G}^g}^{-1},$ (3)
is a well-defined group action.

2. For any $g \in G$, $T_{\theta}(s, r; g \cdot z_l)$ solves the eikonal equation with velocity field $\mu(g, v_l)$.

Steerability on eikonal solvers

Isometries

 $\mu(g, v_l)(s) = v_l(g^{-1} \cdot s)$ if G acts isometrically on \mathcal{M}

Conformal

 $\mu(g, v_l)(s) = \Omega(g, s) v_l(g^{-1} \cdot s) \text{ if } G$ acts conformally on *M* with conformal factor $\Omega(g, s) > 0$

$$\mathscr{G}_{gs}\left(\mathrm{d}L_g(s)[\dot{s}_1], \, \mathrm{d}L_g(s)[\dot{s}_2]\right) = \Omega(g, s)^2 \,\mathscr{G}_s\left(\dot{s}_1\right)$$
for all $\dot{s}_1, \dot{s}_2 \in T_s \mathcal{M}$

Equivariant Neural Eikonal Solver (E-NES)

- 1. Factored eikonal equation: $T_{\theta}(s, r; z) = \tilde{d}(s, r) \tau_{\theta}(s, r; z)$
 - $\tilde{d}(s, r)$ is an approximation of the Riemannian distance
 - Avoids irregular behavior as $r \rightarrow s$

Equivariant Neural Eikonal Solver (E-NES)

- 1. Factored eikonal equation: $T_{\theta}(s, r; z) = \tilde{d}(s, r) \tau_{\theta}(s, r; z)$
 - $\tilde{d}(s, r)$ is an approximation of the Riemannian distance
 - Avoids irregular behavior as $r \rightarrow s$
- 2. Parametrized as $\tau_{\theta} = P \circ E$
 - $E: \mathcal{M} \times \mathcal{M} \times \mathcal{P}(\mathcal{Z}) \to \mathbb{R}^L$ adapts the invariant cross-attention encoder of Wessels et al. 2024
 - $P: \mathbb{R}^L \to \mathbb{R}_+$ is the **bounded projection head** from *Grubas et al. 2023*

David R. Wessels, David M. Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstratios Gavves, and Erik J. Bekkers. Grounding Continuous Representations in Geometry: Equivariant Neural Fields, 2024

Serafim Grubas, Anton Duchkov, and Georgy Loginov. Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics. 2023

Invariant cross-attention encoder

$$E(s,r;z) = \operatorname{FFN}_E\left(\sum_{i=1}^N \alpha_i \, v(\tilde{\mathbf{a}}_i, \mathbf{c}_i)\right) \quad \text{with} \ \ \alpha_i = \frac{\exp(q(\tilde{\mathbf{a}}_i)^\top k(\mathbf{c}_i)/\sqrt{d_k})}{\sum_{j=1}^N \exp(q(\tilde{\mathbf{a}}_j)^\top k(\mathbf{c}_j)/\sqrt{d_k})},$$

$$q(\mathbf{\tilde{a}}) = W_q \mathbf{\tilde{a}}, \quad k(\mathbf{c}) = W_k \operatorname{LN}(W_c \mathbf{c}),$$

 $v(\mathbf{\tilde{a}}, \mathbf{c}) = \operatorname{FFN}_v(W_v \operatorname{LN}(W_c \mathbf{c}) \odot (1 + \operatorname{FFN}_{\gamma}(W_c \mathbf{c})))$

To enforce the steerability, $\mathbf{a}_i^{(s,r)} = \mathbf{R}_i^{(s,r)}$

To enforce $\tau_{\theta}(s, r; z) = \tau_{\theta}(r, r; z)$

 $(\tilde{\mathbf{a}})) + \text{FFN}_{\beta}(\tilde{\mathbf{a}})),$

$$\operatorname{RFF}(\operatorname{Inv}(s,r,g_i)), \quad \mathbf{a}_i^{(r,s)} = \operatorname{RFF}(\operatorname{Inv}(r,s,g_i)),$$

$$s;z)$$
, we use $\mathbf{\tilde{a}}_i = (\mathbf{a}_i^{(s,r)} + \mathbf{a}_i^{(r,s)})/2$

Computation of Fundamental Joint-Invariants

Let *G* be a Lie group acting smoothly and regularly (but not necessarily freely) on each Riemannian manifold \mathcal{M}_i via $\delta_i : G \times \mathcal{M}_i \to \mathcal{M}_i$, for i = 1, ..., m, and hence diagonally on

$$\Pi = \mathcal{M}_1 \times \cdots \times \mathcal{M}_m, \quad \delta(g, (p_1, \dots, p_m)) = (\delta_1(g, p_1), \dots, \delta_m(g, p_m))$$

On the augmented space $\overline{\Pi} = \Pi \times G$, define

$$\overline{\delta}(h,(p_1,\ldots,p_m,g)) = (\delta(h,(p_1,\ldots,p_m)),hg).$$

Then:

- $\overline{\delta}$ is free.
- A moving frame is given by $\rho : \overline{\Pi} \to G$, such that $\rho(p_1, \dots, p_m, g) = g^{-1}$.
- The set $\{\delta_i(g^{-1}, p_i)\}_{i=1}^m$ forms a complete collection of functionally independent invariants of the action $\overline{\mu}$.

UNIVERSITY OF AMSTERDAM

Results

2D OpenFWI dataset: Empirical results

Results for FlatVel-A

Results for FlatFault-A

Results for Style-A

Results for FlatVel-B

Results for FlatFault-B

Results for Style-B

- 0.030 - 0.025 0.020 0.015 - 0.010 0.005

0.012 0.010 0.008 - 0.006 0.004 0.002

××××

2D OpenFWI dataset: Comparison vs. FC-DeepONet

Table 1: Performance comparison on OpenFWI datasets. Colours denote Best, Second best, and Third best performing setups for each dataset.

			E-NES							
	FC-DeepONet		Autodecoding (100 epochs)		Autodecodi	ng (convergence)	Meta-learning			
Dataset	RE (↓)	Fitting (s)	RE (↓)	Fitting (s)	RE (↓)	Fitting (s)	R E (↓)	Fitting (s)		
FlatVel-A	0.00277	-	0.00952	223.31	0.00506	1120.25	0.01065	5.92		
CurveVel-A	0.01878	-	0.01348	222.72	0.00955	1009.67	0.02196	5.91		
FlatFault-A	0.00514	-	0.00857	222.61	0.00568	1014.45	0.01372	5.92		
CurveFault-A	0.00963	-	0.01108	222.89	0.00820	1123.90	0.02086	5.92		
Style-A	0,03461	-	0.01034	222.00	0.00833	1117.99	0.01317	5.92		
FlatVel-B	0.00711	_	0.01581	222.74	0.00860	1010.32	0.02274	5.91		
CurveVel-B	0.03410	-	0.03203	222.97	0.02250	1127.87	0.03583	5.90		
FlatFault-B	0.04459	-	0.01989	222.70	0.01568	1133.98	0.03058	5.93		
CurveFault-B	0.07863	-	0.02183	222.89	0.01885	893.84	0.03812	5.89		
Style-B	0.03463	-	0.01171	221.90	0.01069	896.06	0.01541	5.90		

Ablation: Effect of equivariance

Figure 2: Comparative analysis of equivariant conditioning variables on the Style-B dataset. For non-equivariant models $\mathcal{Z} \cong \mathbb{R}^c$, while equivariant models use $\mathcal{Z} = SE(2) \times \mathbb{R}^c$.

Conclusions

- Novel, expressive generalization of Equivariant Neural Fields to functions defined over products of Riemannian manifolds with regular group actions.
- Equivariant Neural Eikonal Solver (E-NES), efficiently solve eikonal equations by leveraging geometric symmetries, enabling generalization across group transformations without explicit data augmentation.
- We validate our approach through comprehensive experiments on **2D and 3D seismic travel-time benchmarks**,
 - Improved scalability,
 - Improved adaptability
 - Improved user controllability

Thank You Q&A

UNIVERSITY OF AMSTERDAM

Appendix

Bounded projection head

2023]. The final output is projected into $[1/v_{\text{max}}, 1/v_{\text{min}}]$ by:

$$P(\mathbf{h}) = \left(\frac{1}{v_{\min}} - \frac{1}{v_{\max}}\right) \sigma(\alpha_0 \cdot \text{FFN}_P(\mathbf{h})) + \frac{1}{v_{\max}},$$

where σ is the sigmoid function and $\alpha_0 \in \mathbb{R}_+$ is a learnable temperature parameter.

Serafim Grubas, Anton Duchkov, and Georgy Loginov. Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics. 2023

2. Bounded Velocity Projection. The encoder output h = E(s, r; z) passes through a second MLP network FFN_P with AdaptiveGauss activations to model sharp wavefronts and caustics [Grubas et al.,

Training loss

Let $\mathcal{V} = \{v_l : \mathcal{M} \to [v_{\min}, v_{\max}]\}_{l=1}^K$ be our training set of K velocity fields over the domain \mathcal{M} . At each iteration, we sample a batch \mathcal{B} with B velocity fields $\{v_i\}_{i=1}^B \subseteq \mathcal{V}$ and N_{sr} source–receiver pairs $\{(s_{i,j}, r_{i,j})\}_{j=1}^{N_{sr}} \subset \mathcal{M}^2$ for each v_i . Let $\{z_i\}_{i=1}^B$ be the conditioning variables associated with $\{v_i\}_{i=1}^B$, then we minimize a physics-informed loss that enforces the Hamilton-Jacobi equation [Grubas et al., 2023]:

$$L(\theta, \{z_i\}_{i=1}^B, \mathcal{B}) = \frac{1}{B N_{sr}} \sum_{i=1}^B \sum_{j=1}^{N_{sr}} \Big(|v_i(s_{i,j})^2| |\operatorname{grad}_s T_\theta(s_{i,j}, r_{i,j}; z_i)||_{\mathcal{G}}^2 - 1 | + |v_i(r_{i,j})^2| |\operatorname{grad}_r T_\theta(s_{i,j}, r_{i,j}; z_i)||_{\mathcal{G}}^2 - 1 | \Big).$$
(5)

Autodecoding algorithm

Algorithm 1 Autodecoding Training

- **Require:** Velocity fields $\mathcal{V} = \{v_l\}_{l=1}^K$, epoch learning rate η
- 1: Randomly initialize shared base network T_{θ}
- 2: Initialize latents $z_l \leftarrow \{(g_i, \mathbf{c}_i)\}_{i=1}^N$ for all velocity fields
- 3: for epochs = 1 to num_epochs do
- 4: while dataloader not empty do
- 5: Sample batch $\mathcal{B} = \{(s_{i,j}, r_{i,j}, v_i(s_{i,j}), v_i(r_{i,j}))\}_{i=1,j=1}^{B,N_{sr}}$
- 6: Compute loss $L(\theta, \{z_i\}_{i=1}^B, \mathcal{B})$ (see Equation 5)
- 7: Update $\theta \leftarrow \theta \eta \nabla_{\theta} L$
- 8: Update each $z_i \leftarrow z_i \eta \nabla_{z_i} L$
- 9: end while

10: end for

Ensure: Trained θ and latents $\{z_l\}_{l=1}^K$

Require: Velocity fields $\mathcal{V} = \{v_l\}_{l=1}^K$, epochs num_epochs, batch size B, pairs per field N_{sr} ,

θ velocity fields

 $_{j,j}, v_i(r_{i,j}))\}_{i=1,j=1}^{B,N_{sr}}$ Equation 5

Meta-learning algorithm

Algorithm 2 Meta-learning Training

Require: Velocity fields $\mathcal{V} = \{v_l\}_{l=1}^K$, outer
per field N_{sr} , learning rates $\eta_{\theta}, \eta_{SGD}$
1: Initialize shared base network T_{θ} (option
2: for $epochs = 1$ to num_epochs do
3: while dataloader not empty do
4: Sample batch of velocity fields {
5: Initialize latents $z_i^{(0)}$ for each v_i
6: for $t = 1$ to S do
7: Sample N_{sr} source-receiver
8: Construct batch $\mathcal{B}^{(t-1)} = \{(s, t) \in \mathcal{B}^{(t-1)}\}$
9: Compute $\widetilde{L}(\theta, \{z_i^{(t-1)}\}_{i=1}^B, \mathcal{B}\}_{i=1}^B$
10: Update each $z_i^{(t)} \leftarrow z_i^{(t-1)} -$
11: end for
12: Sample N_{sr} source–receiver pair
13: Construct batch $\mathcal{B}^{(S)} = \{(s_{i,j}^{(S)}, r$
14: Compute $\widetilde{L}_{meta}(\theta) = \widetilde{L}(\theta, \{z_i^{(S)})$
15: Update $\theta \leftarrow \theta - \eta_{\theta}, \nabla_{\theta} \widetilde{L}_{meta}$
16: Update $\eta_z \leftarrow \eta_z - \eta_{\text{SGD}} \nabla_{\eta_z} \widetilde{L}_{me}$
17: end while
18: end for
Ensure: Trained θ

epochs num_epochs , inner steps S, batch size B, pairs

ally pretrained), and learnable learning rate η_z .

 $\{v_i\}_{i=1}^B \subseteq \mathcal{V}$

 $\triangleright \text{Inner loop: Update latents}$ $pairs \{(s_{i,j}^{(t-1)}, r_{i,j}^{(t-1)})\}_{j=1}^{N_{sr}} \subset \mathcal{M}^2, \text{ for each } v_i$ $(s_{i,j}^{(t-1)}, r_{i,j}^{(t-1)}, v_i(s_{i,j}^{(t-1)}), v_i(r_{i,j}^{(t-1)}))\}_{i=1,j=1}^{B,N_{sr}}$ $\mathcal{B}^{(t-1)}$ $- \eta_z \nabla_{z_i} \widetilde{L}$ $rs \{(s_{i,j}^{(S)}, r_{i,j}^{(S)})\}_{j=1}^{N_{sr}} \subset \mathcal{M}^2, \text{ for each } v_i$ $r_{i,j}^{(S)}, v_i(s_{i,j}^{(S)}), v_i(r_{i,j}^{(S)}))\}_{i=1,j=1}^{B,N_{sr}}$

eta

3D OpenFWI dataset: Scalability analysis

Ablation: Pretrained Meta-learning

ization on Style-A and CurveVel-A OpenFWI datasets.

Figure 5: Comparative analysis of meta-learning convergence with pretrained versus random initial-

Full-grid 2D OpenFWI results

Table 2: Performance on OpenFWI datasets on a 14×14 grid of source points.

	Autodecoding (100 epochs)			Autodecoding (convergence)			Meta-learning		
Dataset	RE (↓)	RMAE (\downarrow)	Fitting (s)	R E (↓)	RMAE (\downarrow)	Fitting (s)	R E (↓)	RMAE (\downarrow)	Fitting (s)
FlatVel-A	0.01023	0.00827	223.31	0.00624	0.00509	1010.90	0.01304	0.01003	5.92
CurveVel-A	0.01438	0.01139	222.72	0.01069	0.00841	1009.67	0.02460	0.01878	5.91
FlatFault-A	0.01050	0.00751	222.61	0.00744	0.00510	1014.45	0.01749	0.01255	5.92
CurveFault-A	0.01380	0.00976	222.89	0.01088	0.00745	1007.97	0.02471	0.01807	5.92
Style-A	0.00962	0.00785	222.00	0.00795	0.00646	783.13	0.01326	0.01036	5.92
FlatVel-B	0.01988	0.01586	222.74	0.01178	0.00906	786.48	0.03077	0.02474	5.91
CurveVel-B	0.04291	0.03349	222.97	0.03297	0.02528	1010.70	0.04977	0.03930	5.90
FlatFault-B	0.01889	0.01413	222.70	0.01557	0.01147	898.28	0.02998	0.02214	5.93
CurveFault-B	0.02244	0.01728	222.89	0.01991	0.01537	561.22	0.03824	0.02945	5.89
Style-B	0.01061	0.00860	221.90	0.00984	0.00798	1120.09	0.01566	0.01227	5.90

Ablation: Autodecoding steps

