
Alejandro García-Castellanos, David R. Wessels, Nicky J. van den Berg, Remco Duits, Daniël M. Pelt, Erik J. Bekkers

Grid-free, scalable travel-time prediction on homogeneous spaces
Equivariant Eikonal Neural Networks

Take a picture to 
download the full paper



Motivation and related work



The eikonal equation

On a Riemannian manifold , the two-point Riemannian Eikonal equation with 
respect to a velocity field  (where ) is: 

 

where  and  denote the Riemannian gradients with respect to the source 
 and the receiver , respectively.  

The solution  corresponds to the travel-time function, and the 
interval  specifies the minimum and maximum velocity values in the 
training set.

(ℳ, 𝒢)
v : ℳ → [vmin, vmax] 0 < vmin ≤ vmax < ∞

∥ grads T(s, r)∥𝒢 = v(s)−1,
∥ gradr T(s, r)∥𝒢 = v(r)−1,
T(s, r) = T(r, s), T(s, s) = 0,

grads gradr
s ∈ ℳ r ∈ ℳ

T : ℳ × ℳ → ℝ+
[vmin, vmax]



Where can I use the eikonal equation?
Computer Vision RoboticsSeismology

Geodesic Segmentation 

Sign Distance Functions

Travel-time predictions 

Ray-tracing

Motion-planing

Segmentation Figure from: Da Chen and Laurent D. Cohen. From Active Contours to Minimal Geodesic Paths: New Solutions to Active Contours Problems by Eikonal Equations, 2019.
Robotics Figure from: Ruiqi Ni and Ahmed H. Qureshi. NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning, March, 2023.

Inverse kinetics



Limitations of current eikonal solvers
• Classical: Fast Marching Method (FMM) 

• Bad memory and computation scalability 
• Requires discretization 

(a) Gradient color

(b) T (x) = 1 (c) T (x) = 5 (d) T (x) = 10

Figure 8: Fast marching with multiple sources.

Figure 9: Comparison mesh (→ 300 000 darts).

mentioning obvious optimisation improvements, the
development of these rules in Jerboa is quite straight-
forward as Jerboa is handling boilerplate develop-
ments (to store, access, and maintain consistency of
the data, or visualize the results). This methodology
allows to focus on the algorithm and to easily explore
variants in future works (unstructured mesh in arbi-
trary dimension).

4.7 Fast Marching on Regular Volume
Grids

As g-maps are defined homogeneously in any dimen-
sion, this allows us to realize a unique fast marching
rule for both 2D and 3D regular orthogonal grids, see
Figure 10. Moreover, for regular grids this implemen-
tation extends to any desired dimension. Obviously,
for all dimensions, the velocity field can be variable
to add local zones where the front velocity is strongly
penalized.

Figure 10: Same unique rule is used to apply fast marching
on 2D and 3D orthogonal regular grids.

4.8 Fast Marching and Contour
Detection

As a playful application, fast marching can find the
shortest path in a maze, see Figure 11. For this pur-
pose, a 2-dimensional grid was created, on which we
have assigned a vertex of the g-map to each pixel of
the maze image. The front velocity on a vertex is pro-
portional to the intensity of the corresponding pixel
(black pixel = low velocity). Once the g-map is set
with the appropriate velocities, fast marching is ap-
plied until the chosen destination point is reached. We
then backtrack from the destination to the source by
selecting the shortest local distance value at each step.

5 CONCLUSION AND
PERSPECTIVES

This work provides g-maps as a data structure for the
fast marching algorithm to add abstraction with the
view to be able to apply this algorithm in unstructured
meshes in arbitrary dimension. G-maps also allow the

FMM Figure from: Sofian Toujja, Thierry Bay, Hakim Belhaouari, Laurent Fuchs. Topological Data Structure: The Fast Marching Example. 



Limitations of current eikonal solvers

• Neural solvers: 
• Physics-Informed Neural Networks (PINNs): encode eikonal equation 

into loss function 
• Separate network for each solution → Memory inefficient  
• Not sharing knowledge between solutions → Training inefficient 

• Neural Operators: share a common backbone across solutions and 
condition on velocities profiles 
• Naive conditioning variables → Inefficient adaptability 
• Current approaches are not fully grid free

• Classical: Fast Marching Method (FMM) 
• Bad memory and computation scalability 
• Requires discretization 
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Conditional Neural Fields perspective

Sifan Wang, Jacob H. Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris Perdikaris. Bridging Operator Learning and Conditioned Neural Fields: A Unifying Perspective, 2024.
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Research question

Which are the benefits of framing neural 
eikonal solvers as conditional neural fields?



From Conditional to Equivariant Neural Fields

Given a dataset  of continuous signals 
, each signal  can be associated with a 

latent code  such that a single network 
, can represent the entire dataset: 

, for all  

Conditioning via a learnable point cloud 
 e n h a n c e s e x p r e s s i v i t y a n d 

reconstruction fidelity 

Equivariant Neural Fields encode the Steerability 
property under a group :  

 for all 

𝒟 = {fi}n
i=1

fi : ℳ → ℝd fl
zl

fθ : ℳ × 𝒵 → ℝd

fθ(p; zl) ≈ fl(p) fl ∈ 𝒟

{zi}m
i=1 ⊆ 𝒵

G

fθ(g−1 ⋅ p; {zi}m
i=1) = fθ(p; {g ⋅ zi}m

i=1), g ∈ G
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More on Equivariant Neural Fields

• The steerability of Equivariant Neural Fields can be achieved if and only if the function is 
invariant with respect to transformations of both input and latent variables:

f(g ⋅ p; {g ⋅ zi}m
i=1) = f(p; {zi}m

I=1) ∀g ∈ G
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f(g ⋅ p; {g ⋅ zi}m
i=1) = f(p; {zi}m

I=1) ∀g ∈ G

• We introduce a conditioning variable, represented as a geometric point cloud  
•  is referred to as a pose 
•  is referred to as a context vector 

• We will denote the space of pose-context pairs as the product manifold , so that  
is an element of the power set  

• This representation naturally supports a -group action defined by 

z = {(gi, ci)}N
i=1

gi ∈ G
ci ∈ ℝd

𝒵 = G × ℝd z
𝒫(𝒵)

G g ⋅ z = {(g ⋅ gi, ci)}N
I=1



Method



Steerability on eikonal solvers
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Steerability on eikonal solvers

Isometries Conformal

 if  
acts isometrically on 

μ(g, vl)(s) = vl(g−1 ⋅ s) G
ℳ

μ(g, v)
 if  

acts conformally on  with 
conformal factor 

μ(g, vl)(s) = Ω(g, s) vl(g−1 ⋅ s) G
ℳ

Ω(g, s) > 0

 
for all 

𝒢gs (dLg(s)[ ·s1], dLg(s)[ ·s2]) = Ω(g, s)2 𝒢s ( ·s1, ·s2)·s1, ·s2 ∈ Tsℳ



Equivariant Neural Eikonal Solver (E-NES)
1. Factored eikonal equation:  

•  is an approximation of the Riemannian distance 

• Avoids irregular behavior as  

2. Parametrized as  

•  adapts the invariant cross-attention encoder of Wessels et al. 2024 

•  is the bounded projection head from Grubas et al. 2023

Tθ(s, r; z) = d̃(s, r) τθ(s, r; z)

d̃(s, r)

r → s

τθ = P ∘ E

E : ℳ × ℳ × 𝒫(𝒵) → ℝL

P : ℝL → ℝ+

David R. Wessels, David M. Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstratios Gavves, and Erik J. Bekkers. Grounding Continuous Representations in Geometry: 
Equivariant Neural Fields, 2024

Serafim Grubas, Anton Duchkov, and Georgy Loginov. Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics. 2023



Equivariant Neural Eikonal Solver (E-NES)
1. Factored eikonal equation:  

•  is an approximation of the Riemannian distance 

• Avoids irregular behavior as  

2. Parametrized as  

•  adapts the invariant cross-attention encoder of Wessels et al. 2024 

•  is the bounded projection head from Grubas et al. 2023

Tθ(s, r; z) = d̃(s, r) τθ(s, r; z)

d̃(s, r)

r → s

τθ = P ∘ E

E : ℳ × ℳ × 𝒫(𝒵) → ℝL

P : ℝL → ℝ+

David R. Wessels, David M. Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstratios Gavves, and Erik J. Bekkers. Grounding Continuous Representations in Geometry: 
Equivariant Neural Fields, 2024

Serafim Grubas, Anton Duchkov, and Georgy Loginov. Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics. 2023



Invariant cross-attention encoder



Computation of Fundamental Joint-Invariants
Let  be a Lie group acting smoothly and regularly (but not necessarily freely) 
on each Riemannian manifold  via , for , and 
hence diagonally on 

 

On the augmented space , define  

 

Then: 

•  is free. 

• A moving frame is given by , such that . 

• The set  forms a complete collection of functionally 
independent invariants of the action .

G
ℳi δi : G × ℳi → ℳi i = 1,…, m

Π = ℳ1 × ⋯ × ℳm, δ(g, (p1, …, pm)) = (δ1(g, p1), …, δm(g, pm)) .

Π = Π × G

δ(h, (p1, …, pm, g)) = (δ(h, (p1, …, pm)), h g) .

δ

ρ : Π → G ρ(p1, …, pm, g) = g−1

{δi(g−1, pi)}m
i=1

μ



Results



2D OpenFWI dataset: Empirical results



2D OpenFWI dataset: Comparison vs. FC-DeepONet

Yifan Mei, Yijie Zhang, Xueyu Zhu, Rongxi Gou, and Jinghuai Gao. Fully Convolutional Network- Enhanced DeepONet-Based Surrogate of Predicting the Travel-Time Fields. 2024.



Ablation: Effect of equivariance



Conclusions
• Novel, expressive generalization of Equivariant Neural 

Fields to functions defined over products of Riemannian 
manifolds with regular group actions. 

• Equivariant Neural Eikonal Solver (E-NES), efficiently 
solve eikonal equations by leveraging geometric symmetries, 
enabling generalization across group transformations 
without explicit data augmentation. 

• We validate our approach through comprehensive experiments 
on 2D and 3D seismic travel-time benchmarks,  

• Improved scalability,  

• Improved adaptability 

• Improved user controllability



Thank You
Q&A



Appendix



Bounded projection head

Serafim Grubas, Anton Duchkov, and Georgy Loginov. Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics. 2023



Training loss



Autodecoding algorithm



Meta-learning algorithm



3D OpenFWI dataset: Scalability analysis



Ablation: Pretrained Meta-learning



Full-grid 2D OpenFWI results



Ablation: Autodecoding steps
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