

Topological regularization and relative latent representations

Alejandro García Castellanos

Supervisors: Martina Scolamiero, Giovanni Luca Marchetti

Examiner: Florian Pokorny

Opponent: Adhithyan Kalaivanan

Background

Overview

Representation Similarity

Model-stitching

Relative Representation

Topological Data Analysis

Topological ML

Topological Densification

Overview: Relative Latent Representations

Representation Similarity

Model-stitching

Relative Representation

Topological Data Analysis

Topological ML

Topological Densification

How similar are the latent spaces between two random initializations?

Based on statistical similarity metrics:

• CCA

- \circ SVCCA
- PWCCA
- <u>CKA</u>

"Well-performing" networks tend to have more similar representations

Wider networks with low-generalization error

ɛ-similar representations

"Almost isometric up-to-scale"

Two representations $X, Y \subseteq \mathbb{R}^n$ are ε -similar if there exist a bijection $T : X \to Y$ s.t. exists $\alpha \in \mathbb{R}^*$ for which $|d(T(x_1), T(x_2)) - \alpha \cdot d(x_1, x_2)| \le \varepsilon$

6

Relative representations

Let $\varphi : \mathcal{X} \to \mathcal{Z}$ the feature extractor component of your network, and $\mathcal{A} = \{a_1, ..., a_k\} \subset \mathcal{X}$ a set of points called *anchors*. Then for any similarity function *sim* we define the relative representation of a point $x \in S$ w.r.t. \mathcal{A} as

 $(sim(\varphi(x),\varphi(a_1)),...,sim(\varphi(x),\varphi(a_k)) \in \mathbb{R}^k.$

When we use the cosine similarity \rightarrow we are **invariant to 0-similarities**

[1] L. Moschella, V. Maiorca, M. Fumero, A. Norelli, F. Locatello, and E. Rodolà, "Relative representations enable zero-shot latent space communication," Sep. 2022

Zero-shot cross-domain model stitching

Parallel anchors

Original training and testing setup

(a) Train w/ relative transformations.

(b) Model stitching

Overview: Topological Densification

Representation Similarity

Model-stitching

Relative Representation

Topological Data Analysis

Topological ML

Topological Densification

Topological data analysis

Topological data analysis (TDA) is an approach for the **analysis of the qualitative geometric properties** of datasets using topology techniques.

- Geometric qualitative properties: connected components, holes, cavities...
- Advantages:
 - Have a sense of the shape of higher-dimensional data that cannot be directly visualized.
 - Results are stable against noise.

• <u>Def:</u> An *k*-simplex σ in \mathbb{R}^d with $d \ge k$ is a *k*-dimensional triangle.

• <u>Def:</u> A *simplicial complex* is a finite collection of simplices *K* that satisfies that the (non-empty) intersections between the simplices are simplicies of lesser dimension, belonging to the simplicial complex *K*.

Not a simplicial complex

Vietoris-Rips complex

Definition Let $X \subset \mathbb{R}^d$ be a finite set of points. We call *Vietoris-Rips* complex of X of radius r to the abstract simplicial complex $VR(X,r) = \{\sigma \subseteq X \mid \text{diam } \sigma \leq r\}$ $= \{\{x_0, ..., x_n\} \subseteq X \mid d(x_i, x_j) \leq r \forall i, j\}$.

[2] Choudhary, Aruni - https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26911, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=130411727

Persistent Homology

Each point (a_i, a_j) of the Persistence Diagram represents an l-dimensional hole that is born at "instant" a_i and dies at a_j

Topological Densification

High likelihood of β -connected

- Equal to having all $H_0(VR)$ homology death-times in (0, β)
- Can be enforced with **regularization**:

$$\mathcal{L} = \mathcal{L}_{cls} + \lambda \mathcal{L}_{\beta}, \ \lambda > 0$$

where,

$$\mathcal{L}_{\beta} = \sum_{i=1} \sum_{d \in \dagger(\mathcal{B}_i)} |d - \beta|$$

n

- Condensate, for each class, its push-forward distributions inside their decision boundary
- Reduce generalization error

Latent space similarity study

Theoretical: Intertwiner Groups

Let $G_{\sigma_{n_i}}$ denote the set of invertible linear transformations that exhibit equivalent transformations before and after the nonlinear layer σ_{n_i} , i.e.,

$$G_{\sigma_{n_i}} \equiv \{ A \in GL_{n_i}(\mathbb{R}) \mid \exists B \in GL_{n_i}(\mathbb{R}) \text{ s.t. } \sigma_{n_i} \circ A = B \circ \sigma_{n_i} \}$$

- All elements are of the form PDwhere $P \in \Sigma_n$ and D is diagonal
- Symmetries in weight space
 ↓
 Symmetries in latent representations

Robust relative transformation

We apply BatchNorm without the learnable affine transformation before computing the cosine sim.

Invariant to intertwiner group actions and O-similarities

Numerical analysis: 2-dimensional autoencoder

Minimum Frobenius distance analysis (Linear layers: 2)

Procrustes analysis: 2-dimensional autoencoder

VETENSKAP OCH KONST

Numerical analysis: 32-dimensional autoencoder

Minimum Frobenius distance analysis (Linear layers: 512-256-128-32)

Numerical analysis: classifier

Minimum Frobenius distance analysis (Linear layers: 512-256-128-32)

Cross-domain model-stitching analysis

Multilingual model-stitching setup

Investigate the impact of topological densification on zero-shot stitching performance while using relative representations

Topological densification dataloader

Debiasing trick:

- 1. Freeze Linear and LayerNorm modules and set BatchNorm1d and LayerNorm to training mode
- 2. Pass the "random" mini-batch
- 3. Unfreeze Linear and LayerNorm modules and set BatchNorm1d and LayerNorm to eval mode
- 4. Pass the remaining mini-batches

Full-finetune	Biased dataloader + Debiasing trick
Relative: better overall	 Slightly worse results
Absolute:	
• Better non-stitching	Enables topological regularization
• Worse stitching	

			Absolute		Relative			
Decoder	Encoder	$Acc \times 100$	FScore \times 100	$MAE \times 100$	$Acc \times 100$	$FScore \times 100$	$MAE \times 100$	
en	en fr	59.08 ± 0.20 35.06 ± 4.36	$\begin{array}{c} 59.08 \pm 0.85 \\ 31.39 \pm 4.62 \end{array}$	$\begin{array}{c} 48.47 \pm 0.64 \\ 101.75 \pm 4.26 \end{array}$	$\begin{array}{c} 61.30 \pm 0.28 \\ 48.48 \pm 0.08 \end{array}$	$\begin{array}{c} 60.84 \pm 0.77 \\ 48.74 \pm 0.20 \end{array}$	$\begin{array}{c} 44.87 \pm 0.92 \\ 59.26 \pm 0.37 \end{array}$	
fr	en fr	27.04 ± 6.14 48.74 ± 0.62	25.86 ± 5.75 48.99 ± 0.06	$\begin{array}{c} 115.04 \pm 9.79 \\ 62.53 \pm 0.92 \end{array}$	$\begin{array}{c} 60.87 \pm 1.15 \\ 49.37 \pm 0.30 \end{array}$	60.25 ± 1.63 50.07 ± 0.19	45.08 ± 1.87 58.24 ± 0.79	

Pre-relative topological densification

The relative transformation is not always cluster-preserving

Post-relative topological densification

High mismatch of H_0 homology \rightarrow Potential information bottleneck

EN relative: VR H_0 pers w/ L^2 (post, $\lambda = 0.1$, $\beta = 3$)

Both pre and post-relative topological densification

EN-FR relative_both: VR H_0 pers w/ L^2 (Model 1: both, $\lambda = 0.02$, $\beta = 3$) (Model 2: both, $\lambda = 0.02$, $\beta = 4$)

Model 1: Max death times (Pre max mean 6.05, Post max mean 12.86)

Model 1: All death times (Pre mean 3.06, Post mean 4.92)

Topological densified

Post-rel

Pre-rel

30

25

Topological densification: results

			Absolute			Relative			
	Decoder	Encoder	$Acc \times 100$	FScore × 100	$MAE \times 100$	$Acc \times 100$	FScore \times 100	$MAE \times 100$	
Vanilla	en	en fr	59.08 ± 0.20 35.06 ± 4.36	59.08 ± 0.85 31.39 ± 4.62	$\begin{array}{c} 48.47 \pm 0.64 \\ 101.75 \pm 4.26 \end{array}$	$\begin{array}{c} 61.30 \pm 0.28 \\ 48.48 \pm 0.08 \end{array}$	$\begin{array}{c} 60.84 \pm 0.77 \\ 48.74 \pm 0.20 \end{array}$	$\begin{array}{c} 44.87 \pm 0.92 \\ 59.26 \pm 0.37 \end{array}$	
	fr	en fr	27.04 ± 6.14 48.74 ± 0.62	25.86 ± 5.75 48.99 ± 0.06	$\begin{array}{c} 115.04 \pm 9.79 \\ 62.53 \pm 0.92 \end{array}$	$\begin{array}{c} 60.87 \pm 1.15 \\ 49.37 \pm 0.30 \end{array}$	60.25 ± 1.63 50.07 ± 0.19	45.08 ± 1.87 58.24 ± 0.79	

			Absolute			Relative		
	Decoder	Encoder	$Acc \times 100$	$FScore \times 100$	$MAE \times 100$	$Acc \times 100$	$FScore \times 100$	$MAE \times 100$
Topological	22	en	60.20 ± 0.88	59.69 ± 0.37	46.33 ± 0.47	61.25 ± 0.24	61.37 ± 0.07	44.50 ± 0.17
densified	en	fr	30.04 ± 0.93	18.56 ± 1.73	121.52 ± 16.07	50.14 ± 0.76	50.55 ± 0.50	58.81 ± 0.16
aensmea								
	fr	en	41.01 ± 5.53	29.78 ± 11.70	87.95 ± 7.62	60.49 ± 0.78	60.90 ± 0.54	44.96 ± 0.34
	11	fr	51.06 ± 0.00	51.81 ± 0.04	56.63 ± 0.01	51.27 ± 0.01	51.71 ± 0.19	57.94 ± 0.74

Topological densification: extra

Having the same densification parameter can benefit the stitching performance

		Relative					
Decoder	Encoder	$Acc \times 100$	FScore \times 100	$MAE \times 100$			
en	en fr	$\frac{61.25 \pm 0.24}{50.90 \pm 0.65}$	$\begin{array}{c} 61.37 \pm 0.07 \\ 51.50 \pm 0.66 \end{array}$	$\begin{array}{c} 44.50 \pm 0.17 \\ 57.27 \pm 0.07 \end{array}$			
fr	en fr	$\frac{60.87 \pm 0.95}{50.11 \pm 0.38}$	$\begin{array}{c} 61.27 \pm 0.77 \\ 50.58 \pm 0.79 \end{array}$	$\begin{array}{c} 44.56 \pm 0.71 \\ 57.78 \pm 0.14 \end{array}$			

Future work

- Investigation of **alternative simplicial complex** constructions: *Lazy witness complex*
- Analysis of **representation similarity in multilingual model stitching**: CKA analysis
- Testing topological regularization on large models with increased GPU VRAM
- Exploring **other modalities:** *Image-Text*
- Exploring higher dimensional homology

Thank you!

Extra

- Algebraic formalism that will allow us to count:
 - Connected components.
 - Holes.
 - Cavities.
 - Etc.

• <u>Def:</u> Let X be a geometric object, we define $\beta_i(X)$, the *i*-th Betti number of X, as the **number of** *i*-dimensional holes of X.

• It will allow us to calculate the Betti numbers of a simplicial complex using linear algebra.

- $\beta_0(K) = 11$ (Connected comp.) $\beta_1(K) = 0$ (Holes) $\beta_2(K) = 0$ (Cavities)
- $\beta_0(K) = 7$ (Connected comp.) $\beta_1(K) = 0$ (Holes) $\beta_2(K) = 0$ (Cavities)

 $\beta_0(K) = 1$ (Connected comp.) $\beta_1(K) = 1$ (Holes) $\beta_2(K) = 0$ (Cavities)

Intertwiner Groups: properties

Symmetries in weight space \rightarrow Symmetries in latent representations

Proposition Suppose $A_i \in G_{\sigma_{n_i}}$ for $1 \le i \le k - 1$, and let

$$\widetilde{W} = (A_1 W_1, A_1 b_1, A_2 W_2 \phi_{\sigma}(A_1^{-1}), A_2 b_2, \dots, W_k \phi_{\sigma}(A_{k-1}^{-1}), b_k)$$

Then, as functions, for each m

$$f_{\leq m}(x,\widetilde{W}) = \phi_{\sigma}(A_m) \circ f_{\leq m}(x,W),$$

$$f_{>m}(x,\widetilde{W}) = f_{>m}(x,W) \circ \phi_{\sigma}(A_m)^{-1},$$

where $f_{\leq m}$ and $f_{>m}$ represent the truncations of the network before and after layer m, respectively. In particular, $f(x, \widetilde{W}) = f(x, W)$ for all $x \in \mathbb{R}^{n_0}$.

Robust relative transformation

Definition — Let $\varphi : \mathcal{X} \to \mathcal{Z} = \mathbb{R}^m$ be our encoder, and $\mathbb{A} \in \mathbb{R}^{d \times k}$, $\mathbb{B} \in \mathbb{R}^{d \times n}$ the matrix representation of \mathcal{A} and \mathcal{B} . Then, the *robust relative representation* of $\mathcal{B} \subset \mathcal{X}$ w.r.t. \mathcal{A} is

$$\widehat{T}_{\varphi}(\mathcal{B},\mathcal{A}) = \left(\widehat{\varphi(\mathbb{A})}D_{\mathbb{A}}\right)^{T}\left(\widehat{\varphi(\mathbb{B})}D_{\mathbb{B}}\right) \in \mathbb{R}^{k \times n},$$

where

$$\begin{split} D_{\mathbb{A}} &= \operatorname{Diag}\left(\frac{1}{\sum_{i=1}^{m}\widehat{\varphi(\mathbb{A})}_{i,1}^{2}},...,\frac{1}{\sum_{i=1}^{m}\widehat{\varphi(\mathbb{A})}_{i,k}^{2}}\right) \,,\\ D_{\mathbb{B}} &= \operatorname{Diag}\left(\frac{1}{\sum_{i=1}^{m}\widehat{\varphi(\mathbb{B})}_{i,1}^{2}},...,\frac{1}{\sum_{i=1}^{m}\widehat{\varphi(\mathbb{B})}_{i,n}^{2}}\right) \,, \end{split}$$

and $\widehat{\varphi(\mathbb{A})}$ and $\widehat{\varphi(\mathbb{B})}$ represent the respective BatchNorm mean and variance standardizations of the anchor and batch images (without the learnable affine transformation). When the batch and the encoder are implied, we can denote this transformation by $\widehat{T}_{rel}(\mathcal{A})$.

Numerical similarity metrics: formulas

$$\operatorname{CKA}(X,Y) = \frac{\left\|\Sigma_{X,Y}\right\|_{F}^{2}}{\sqrt{\left\|\Sigma_{X,X}\right\|_{F}^{2} \cdot \left\|\Sigma_{Y,Y}\right\|_{F}^{2}}}$$

where Σ represents the covariance matrix

$$\min \operatorname{Frob}(A, B) = \min_{P \in \Pi} \left\| \frac{A}{\|A\|_F} - P \frac{B}{\|B\|_F} \right\|_F$$

where A and B are the distance matrices of X and Y

Procrustes analysis: 32-dimensional autoencoder

Procrustes analysis (Linear layers: 512-256-128-32) [Projected w/ PCA]

VETENSKAP OCH KONST

Procrustes analysis: classifier

Procrustes analysis (Linear layers: 512-256-128-32) [Projected w/ PCA]

VETENSKAP OCH KONST

Lazy Witness complex

Definition — (Nested family of witness complexes [10]). Let (\mathcal{X}, d) be a metric space, $X \subset \mathcal{X}$ be a dataset, $L = \{l_0, ..., l_n\} \subseteq X$ be a set of landmark points, and $\varepsilon > 0$. Then the k-simplex $\sigma = \{u_1, ..., u_k\}$ with $u_i \in L$ belongs to the *Lazy Witness complex* $W_{\varepsilon}(X, L)$ iff all its faces belong to $W_{\varepsilon}(X, L)$ and there is a witness $x \in X$, such that:

 $\max\{d(u_i, x) \mid u_i \in \{u_1, ..., u_k\}\} \le \varepsilon.$

Controlling $H_0(VR) \rightarrow$ Topological densification

What beneficial properties for classification can we obtain by controlling $H_n(VR)$ for n>0?