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Overview: Relative Latent Representations
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Representation Similarity
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How similar are the latent spaces between two random initializations?

Based on statistical similarity metrics:

• CCA

○ SVCCA

○ PWCCA

• CKA

“Well-performing” networks tend to have more 
similar representations

Wider networks with low-generalization error



𝝴-similar representations
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This is mainly based on empirical evidence

Need for theoretical foundation explaining the 
origin of the ε-similarities

“Almost isometric up-to-scale”



Relative representations
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When we use the cosine similarity → we are invariant to 0-similarities

[1] L. Moschella, V. Maiorca, M. Fumero, A. Norelli, F. Locatello, and E. Rodolà, “Relative representations enable zero-shot latent space communication,” Sep. 2022



Zero-shot cross-domain model stitching
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Original training and testing setupParallel anchors

cat

dog

bird

English anchors

gato

pájaro

perro

Spanish anchors



Overview: Topological Densification
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Topological data analysis
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Topological data analysis (TDA) is an approach for the analysis of the qualitative 
geometric properties of datasets using topology techniques.

● Geometric qualitative properties: connected components, holes, cavities…

● Advantages:
○ Have a sense of the shape of higher-dimensional data that cannot be 

directly visualized.

○ Results are stable against noise.



Simplicial complex
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• Def: A simplicial complex is a finite collection of simplices 𝐾 that satisfies that the 

(non-empty) intersections between the simplices are simplicies of lesser 

dimension, belonging to the simplicial complex 𝐾.

● Def: An 𝑘-simplex 𝜎 in ℝ𝑑  with 𝑑 ≥ 𝑘 is a 𝑘-dimensional triangle.

0-simplex 1-simplex 2-simplex 3-simplex
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Is a simplicial complex

Not a simplicial complex



Vietoris-Rips complex
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[2] Choudhary, Aruni - https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/26911, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=130411727



Persistent Homology
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Topological Densification
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High likelihood of β-connected Mass attract mass

● Condensate, for each class, its 
push-forward distributions inside their 
decision boundary

● Reduce generalization error

● Equal to having all H
0

(VR) homology death-times in (0, β)
 

● Can be enforced with regularization:

where,
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Latent space similarity study



Theoretical: Intertwiner Groups
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● All elements are of the form  PD 
where  P in em   and          is diagonal

● Symmetries in weight space 

Symmetries in latent representations

Robust relative transformation
We apply BatchNorm without the learnable affine 
transformation before computing the cosine sim.

Invariant to intertwiner group actions and 
0-similarities



Numerical analysis: 2-dimensional autoencoder
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Procrustes analysis: 2-dimensional autoencoder
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Numerical analysis: 32-dimensional autoencoder
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Numerical analysis: classifier
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Cross-domain model-stitching analysis



Multilingual model-stitching setup
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Pre-relative Post-relative Both

Investigate the impact of topological densification on zero-shot stitching performance while using relative representations



Topological densification dataloader
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Debiasing trick:

1. Freeze Linear and LayerNorm modules and set 
BatchNorm1d and LayerNorm to training mode

2. Pass the “random” mini-batch 

3. Unfreeze Linear and LayerNorm modules and 
set BatchNorm1d and LayerNorm to eval mode

4. Pass the remaining mini-batches 



Baselines
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Full-finetune Biased dataloader + Debiasing trick

● Relative: better overall

● Absolute:
○ Better non-stitching
○ Worse stitching

● Slightly worse results

● Enables topological regularization



Pre-relative topological densification
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The relative transformation is not always cluster-preserving



Post-relative topological densification
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High mismatch of H
0

 homology → Potential information bottleneck



Both pre and post-relative topological densification
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Vanilla

Topological 
densified



Topological densification: results
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Vanilla

Topological 
densified



Topological densification: extra
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Having the same densification 
parameter can benefit the 

stitching performance

L∞ metric for VR filtration

β  parameter relates to the 
optimal spread

of the clusters in terms of 
angle

Helps hyperparameter 
tuning
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Future work



Future work
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• Investigation of alternative simplicial complex constructions: Lazy witness complex

• Analysis of representation similarity in multilingual model stitching: CKA analysis

• Testing topological regularization on large models with increased GPU VRAM

• Exploring other modalities: Image-Text

• Exploring higher dimensional homology
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Thank you!
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Extra



Potential use case

35



Simplicial homology
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• Algebraic formalism that will allow us to count:
○ Connected components.
○ Holes.
○ Cavities.
○ Etc.

• Def: Let 𝑋 be a geometric object, we define 𝛽𝑖(𝑋), the 𝑖-th Betti number of 𝑋, as the number of 
𝑖-dimensional holes of 𝑋.

• It will allow us to calculate the Betti numbers of a simplicial complex using linear algebra.
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Intertwiner Groups: properties
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Symmetries in weight space → Symmetries in latent representations



Robust relative transformation
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—



Numerical similarity metrics: formulas

40

where A and B are the distance matrices of X and Ywhere Σ represents the covariance matrix



Procrustes analysis: 32-dimensional autoencoder
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Procrustes analysis: classifier
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Lazy Witness complex
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—



Exploring higher dimensional homology
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Single Linkage Hierarchical Clustering ↔ H
0

(VR)

Controlling H
0

(VR) → Topological densification

What beneficial properties for 
classification can we obtain by 

controlling H
n
(VR) for n>0?


