We show improvements of relative representations through invariance to symmetries in parameter space, and topological regularization of the latent spaces

Relative Representations: Topological and Geometric Perspectives

1) Representational Universality: "isometries up to scale"

Let $\varphi \colon \mathcal{X} \to \mathcal{Z}$ be the feature extractor of the network, and let $\mathcal{A} = \{a_1, \ldots, a_k\} \subset \mathcal{Z}$ be a set of elements called *anchors*, and let sim: $\mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ be a similarity function.

The **Relative Representation** of $z \in \mathcal{Z}$ w.r.t. \mathcal{A} is $T_{\text{rel}}^{\mathcal{A}}(z) = (\sin(z, a_1), \dots, \sin(z, a_k)) \in \mathbb{R}^k$

sim = cosine sim \rightarrow **Invariant to** *isometries* + *isotropic rescalings*

Good performing models have

Alejandro García-Castellanos, Giovanni Luca Marchetti, Danica Kragic, Martina Scolamiero

4) Constrained clusters: Topological Densification

High likelihood of β -connected

Mass attract mass

- Equal to having all **0-dimensional** persistent homology death-times of the Vietoris-Rips complex in $(0, \beta)$
- Can be enforced with regularization

- Condensate, for each class, its push-forward distributions inside their decision boundary
- Reduce generalization error

2) Symmetry Groups of Activation Functions

The **intertwiner group** of the activation function $\sigma \colon \mathbb{R}^n \to \mathbb{R}^n$ is the set G_{σ}^n of invertible linear transformations that exhibit equivalent transformations before and after σ , i.e.,

$$G_{\sigma}^{n} = \{A \in GL_{n} \mid \exists B \in GL_{n} : \sigma \circ A = B \circ \sigma\}$$

For common activation functions (e.g. GELU, ReLU, sigmoid), the elements of G_{σ}^{n} are the product of a **permutation and a diagonal matrix**

Theoretical explanation for the emergence of structurally-similar representations in networks

3) Invariance trading: Robust Relative Representation

5) Topologically regularized relative representation

We apply the **consistent** topological densification **before** and after the (robust) relative transformation in all of our models during the fine-tuning phase

Robust Relative Representation: We apply Gaussian *normalization* with respect to a batch \mathscr{B} of data, i.e., a simple form of batch normalization (without learnable parameters), before computing the cosine sim

We are now invariant to shifts + intertwiner group actions

 \odot We trade off invariance to isometries other than permutations with more general non-isotropic rescalings \rightarrow Good trade in high dimensional latent spaces:

(Performance comparison on zero-shot model stitching.										
			Absolute			Relative Vanilla			Relative Robust			
	γ	φ	Acc (\uparrow)	$F_1 (\uparrow)$	MAE (\downarrow)	Acc (\uparrow)	$F_1 (\uparrow)$	MAE (\downarrow)	Acc (\uparrow)	$F_1 (\uparrow)$	MAE (\downarrow)	
	en	en fr	$59.26_{\pm 0.66}\\24.28_{\pm 10.11}$	$\begin{array}{c} 58.27_{\pm 0.83} \\ 22.27_{\pm 8.86} \end{array}$	$\begin{array}{c} 49.52_{\pm 0.89} \\ 139.27_{\pm 35.32} \end{array}$	$\begin{array}{c} 38.84_{\pm 1.23} \\ 40.96_{\pm 2.40} \end{array}$	$\begin{array}{c} 23.50_{\pm 2.77} \\ 31.15_{\pm 3.29} \end{array}$	$\begin{array}{c} 84.95_{\pm 9.48} \\ 73.09_{\pm 5.18} \end{array}$	$\begin{array}{c} 60.84_{\pm 0.64} \\ 49.92_{\pm 1.51} \end{array}$	$\begin{array}{c} 60.30_{\pm 0.72} \\ 50.13_{\pm 1.60} \end{array}$	$\begin{array}{c} 45.35_{\pm 0.74} \\ 57.56_{\pm 1.60} \end{array}$	
	fr	en fr	$\begin{array}{c} 24.96_{\pm 9.27} \\ 49.26_{\pm 1.04} \end{array}$	$\begin{array}{c} 23.19_{\pm 8.12} \\ 48.74_{\pm 0.73} \end{array}$	$\begin{array}{c} 132.35_{\pm 24.01} \\ 63.89_{\pm 1.50} \end{array}$	$35.42_{\pm 1.16}$ $41.99_{\pm 3.18}$	$\begin{array}{c} 20.86_{\pm 1.09} \\ 35.33_{\pm 4.55} \end{array}$	$\begin{array}{c} 79.68_{\pm 11.68} \\ 67.77_{\pm 2.24} \end{array}$	$\begin{array}{c} 60.74_{\pm 0.88} \\ 50.31_{\pm 0.88} \end{array}$	$\begin{array}{c} 60.18_{\pm 1.14} \\ 50.95_{\pm 0.82} \end{array}$	$45.19_{\pm 1.16}$ $57.08_{\pm 1.22}$	
/												

Distribution of death times on the English (left) and French (right) datasets. Top: without topological densification. Bottom: with a combination of pre-relative and postrelative topological densification.

	Performance with topological densification.										
-			Relative Robust								
	γ	φ	Acc (\uparrow)	$\mathrm{F}_1~(\uparrow)$	MAE (\downarrow)						
_	en	en fr	$\begin{array}{c} 61.16_{\pm 0.42} \\ 50.48_{\pm 1.04} \end{array}$	$61.26_{\pm 0.18}$ $50.85_{\pm 1.25}$	$\begin{array}{c} 44.63_{\pm 0.26} \\ 57.70_{\pm 0.73} \end{array}$						
	fr	en fr	$60.93_{\pm 0.56} \\ 50.63_{\pm 0.79}$	$61.23_{\pm 0.46}$ $50.97_{\pm 0.85}$	$44.54_{\pm 0.51}$ $57.76_{\pm 0.71}$						

Hybrid Intelligence KTH Royal Institute of Technology, Sweden University of Amsterdam, Netherlands