We show improvements of relative representations
through invariance to symmetries in parameter space,
and topological regularization of the latent spaces

Relative Representations: Topological
and Geometric Perspectives

1) Representational Universality: “isometries up to scale”

Let @: X — Z be the feature extractor of the network, and let
A={ay,...,a,} CZ be a set of elements called anchors, and let
sim: Z X Z — R be a similarity function.

The Relative Representation of 2z € Z w.rt. A is

TA(2) = (sim(z,a1),...,sim(z, a;)) € RF

rel

sim = cosine sim — Invariant to isometries + isotropic rescalings

Good performing models have
“similar” latent representations
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Relative Representations enable
zero-shot Model Stitching

2) Symmetry Groups of Activation Functions

The intertwiner group of the activation function 6: R" = R" is the set G of
invertible linear transformations that exhibit equivalent transformations before

and after o, i.e.,

Gl={Ae€eGL,| dBeGL,: 6°A =B oo}

For common activation functions (e.g. GELU, RelLU, sigmoid), the elements of
G are the product of a permutation and a diagonal matrix

Theoretical explanation for the emergence of structurally-similar
representations in networks

3) Invariance trading: Robust Relative Representation

fRobust Relative Representation: We apply Gaussian

normalization with respect to a batch &% of data, i.e., a simple form
of batch normalization (without learnable parameters), before

Kcomputing the cosine sim j

C We are now invariant to shifts + intertwiner group actions )

@ We trade off invariance to isometries other than permutations with

rait

more general non-isotropic rescalings — Good trade in high
dimensional latent spaces:

r Performance comparison on zero-shot model stitching. j
Absolute Relative Vanilla Relative Robust
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e Equal to having all 0-dimensional
persistent homology death-times

e Condensate, for each class,
its push-forward distributions

of the Vietoris-Rips complexin (0, ) inside their decision boundary

e Can be enforced with regularization e Reduce generalization error

5) Topologically regularized relative representation

We apply the consistent topological densification before
and after the (robust) relative transformation in all of our
models during the fine-tuning phase
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Distribution of death times on the English (left) and French (right) datasets. Top:
without topological densification. Bottom: with a combination of pre-relative and post-
relative topological densification.

f - Performance with topological densification. \

Relative Robust

v @  Acc (1) Fi (1) MAE ({)
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