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  1) Representational Universality: “isometries up to scale”

Let ￼  be the feature extractor of the network, and let 
￼   be a set of elements called anchors, and let 
￼     be a similarity function. 

φ : 𝒳 → 𝒵
𝒜 = {a1, …, ak} ⊂ 𝒵
sim : 𝒵 × 𝒵 → ℝ

Test set 1

Forward path

Test set 2

￼  Invariant to isometries + isotropic rescalingssim = cosine sim →

The Relative Representation of ￼    w.r.t. ￼   is 

￼

z ∈ 𝒵 𝒜

T𝒜
rel(z) = (sim(z, a1), …, sim(z, ak)) ∈ ℝk

Good performing models have 
“similar” latent representations 

Empirical evidence of being 
isometric up to scale 

￼ ⇒
￼ ⇒

Relative Representations enable 
zero-shot Model Stitching

  2) Symmetry Groups of Activation Functions

The intertwiner group of the activation function ￼  is the set ￼  of 
invertible linear transformations that exhibit equivalent transformations before 
and after ￼ , i.e.,  

￼

σ : ℝn → ℝn Gn
σ

σ

Gn
σ = {A ∈ GLn ∣ ∃B ∈ GLn : σ ∘ A = B ∘ σ}

For common activation functions (e.g. GELU, ReLU, sigmoid), the elements of 
￼  are the product of a permutation and a diagonal matrixGn

σ

Theoretical explanation for the emergence of structurally-similar 
representations in networks
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  3) Invariance trading: Robust Relative Representation

Robust Relative Representation: We apply Gaussian 
normalization with respect to a batch  of data, i.e., a simple form 
of batch normalization (without learnable parameters), before 
computing the cosine sim

ℬ

We are now invariant to shifts + intertwiner group actions

 We trade off invariance to isometries other than permutations with 
more general non-isotropic rescalings ￼  Good trade in high 
dimensional latent spaces:

→

Absolute Relative Vanilla Relative Robust

� ' Acc (") F1 (") MAE (#) Acc (") F1 (") MAE (#) Acc (") F1 (") MAE (#)

en en 59.26±0.66 58.27±0.83 49.52±0.89 38.84±1.23 23.50±2.77 84.95±9.48 60.84±0.64 60.30±0.72 45.35±0.74

fr 24.28±10.11 22.27±8.86 139.27±35.32 40.96±2.40 31.15±3.29 73.09±5.18 49.92±1.51 50.13±1.60 57.56±1.60

fr en 24.96±9.27 23.19±8.12 132.35±24.01 35.42±1.16 20.86±1.09 79.68±11.68 60.74±0.88 60.18±1.14 45.19±1.16

fr 49.26±1.04 48.74±0.73 63.89±1.50 41.99±3.18 35.33±4.55 67.77±2.24 50.31±0.88 50.95±0.82 57.08±1.22

  4) Constrained clusters: Topological Densification

High likelihood of ￼β-connected

• Equal to having all 0-dimensional 
persistent homology death-times      
of the Vietoris-Rips complex in ￼  

• Can be enforced with regularization

(0, β)

Mass attract mass

• Condensate, for each class,       
its push-forward distributions 
inside their decision boundary 

• Reduce generalization error

  5) Topologically regularized relative representation 

We apply the consistent topological densification before 
and after the (robust) relative transformation in all of our 
models during the fine-tuning phase

Train set A

Cls
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Gradient
Topo loss
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Gradient

Distribution of death times on the English (left) and French (right) datasets.         Top: 
without topological densification. Bottom: with a combination of pre-relative and post-
relative topological densification.

Relative Robust

� ' Acc (") F1 (") MAE (#)

en en 61.16±0.42 61.26±0.18 44.63±0.26

fr 50.48±1.04 50.85±1.25 57.70±0.73

fr en 60.93±0.56 61.23±0.46 44.54±0.51

fr 50.63±0.79 50.97±0.85 57.76±0.71
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