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Steiner Minimal Trees 

Problem: given a set of n points P in the plane, find the set S of points and the tree 
with vertices P ∪ S minimizing the total edge length. 



Applications

SMTs are crucial for (optimal) network design.
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Non-Euclidean SMTs

The SMT problem can be defined on any Riemannian manifold. We focus on the hyperbolic 
space, since its exponential growth is suitable for representing hierarchical data. 

Src: http://summergeometry.org/sgi2021/embedding-hierarchical-data-in-hyperbolic-geometry/

Euclidean Embedding Hyperbolic Embedding

→



● Adapt the heuristic method for computing SMTs by Smith et al. 
to the hyperbolic space

● Apply the method to hierarchy discovery 

Goals



Smith-Lie-Liebman algorithm

The algorithm by Smith et al. computes 
suboptimal Steiner Minimal Trees by a 
divide-and-conquer approach:

1. Reducing the problem to a local one via the 
Delaunay triangulation 

2. Concatenating local Full Steiner Trees (FSTs) 

It has O(n log(n)) computational complexity 🚀



SLL: Delaunay triangulation

Delaunay triangulationVoronoi diagram



SLL: Minimum Spanning Tree

Delaunay triangulation MST

Kruskal



SLL: Heuristic Steiner Minimal Tree

MST SMT

3 and 4 node 
Full Steiner Trees
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Method: Adapting Smith et al.
Goes from local to global solution via Delaunay triangles
⇒ Adaptation from Euclidean to hyperbolic needs:

3-points
System of algebraic equations

4-points
Approximated recursive algorithm



Method: Solving the 3-point case with isoptic curves

In the 3-point case the Steiner point (if exists) is the locus where all segments of the triangle 
△ABC are seen under 120º (i.e., intersection of isoptic curves)
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Method: Solving the 3-point case with isoptic curves

In the 3-point case the Steiner point (if exists) is the locus where all segments of the triangle 
△ABC are seen under 120º (i.e., intersection of isoptic curves)

→

Euclidean Case (aka Fermat point) Hyperbolic Klein model

Solution

Compute Fermat point of 
triangle △ABC 

Solution

Solving a system of 
algebraic equations!



Example

    = 94%
Steiner tree

Minimum 
Spanning Tree

Steiner ratio
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Results for validation on synthetic data
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scenarios, similarly to the Euclidean 
case.
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1) HyperSteiner leads to 2-3% 
improvement over the MST in standard 
scenarios, similarly to the Euclidean 
case.

2) HyperSteiner achieves higher 
improvement over the MST than the 
maximum theoretical improvement on the 
Euclidean case (Gilbert-Pollak conjecture 
~13.4%).

Results for validation on synthetic data



Missing data

Whole Planaria dataset

HyperSteiner:

1) Scales much better 
than Neighbor Joining 
to large datasets.

2) Performs better than 
Minimum Spanning Tree.

Results for cell age prediction on real data



Conclusion

We developed a method to compute a heuristic Steiner tree connecting points 
in a hyperbolic space, with applications to hierarchy discovery in biology.

Questions?


