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Steiner Minimal Trees

Problem: given a set of n points P in the plane,



Steiner Minimal Trees

Problem: given a set of n points P in the plane, find the set S of points and the tree
with vertices P U S minimizing the total edge length.
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Applications

SMTs are crucial for (optimal) network design.




Hardness and Heuristics

The problem of
obtaining the exact
SMT is NP-Hard

— Obtain approximate
solutions using heuristics



Hardness and Heuristics

The problem of
obtaining the exact —>
SMT is NP-Hard

Obtain approximate
solutions using heuristics

The algorithm by Smith et al. computes suboptimal Steiner Minimal Trees by a
divide-and-conquer approach:

1.  Reducing the problem to a local one via the Delaunay triangulation

2. Concatenating local Full Steiner Trees (FSTs)
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Non-Euclidean SMTs

The SMT problem can be defined on any Riemannian manifold. We focus on the hyperbolic
space,




Non-Euclidean SMTs

The SMT problem can be defined on any Riemannian manifold. We focus on the hyperbolic
space, since its exponential growth is suitable for representing hierarchical data.
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Src: http://summergeometry.org/sgi2021/embedding-hierarchical-data-in-hyperbolic-geometry/



e Adapt the heuristic method for computing SMTs by Smith et al.
to the hyperbolic space

e Apply the method to hierarchy discovery
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Smith-Lie-Liebman algorithm

The algorithm by Smith et al. computes
suboptimal Steiner Minimal Trees by a
divide-and-conquer approach:

1. Reducing the problem to a local one via the
Delaunay triangulation

2. Concatenating local Full Steiner Trees (FSTs)

It has O(n log(n)) computational complexity <’

Algorithm 1 SLL Algorithm

Input: Terminals P C R2.
1. Construct the Delaunay triangulation, DT(P).

2. Construct MST(P) (Kruskal algorithm) and simul-

taneously build a priority queue as follows:

2.1. Mark all the triangles o € DT(P) containing
two edges of MST(P) and admitting an FST.

2.2. Place the FSTs of marked triangles ¢ in a
queue @ prioritized on p(o) (smaller first).

. Add the FST of the 4-terminal subsets:

3.1. For each marked triangle o, find its adjacent
triangles o’ such that o and ¢’ contain three
edges of the MST(P).

3.2. Compute the FST o U o’ for each of the two
possible topologies and add the minimal one

to Q.

. Convert ) to an ordered list and append to it the

edges of MST(P), sorted in non-decreasing order.

. Let T be an empty tree. An FST in @ is added to T’

if it does not create a cycle (greedy concatenation).

Output: T — a heuristic SMT of P.
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Voronoi diagram Delaunay triangulation



SLL: Minimum Spanning Tree

Kruskal

—.

Delaunay triangulation MST



SLL: Heuristic Steiner Minimal Tree

3 and 4 node
Full Steiner Trees

—.

MST SMT



Method: Adapting Smith et al.

Goes from local to global solution via Delaunay triangles
= Adaptation from Euclidean to hyperbolic needs:




Method: Adapting Smith et al.

Goes from local to global solution via Delaunay triangles
= Adaptation from Euclidean to hyperbolic needs:

Hyperbolic Voronoi Diagram
3 and 4-point Full Steiner
Trees in a Hyperbolic model

Hyperbolic Delaunay
Triangulation
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Goes from local to global solution via Delaunay triangles
= Adaptation from Euclidean to hyperbolic needs:
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Method: Adapting Smith et al.

Goes from local to global solution via Delaunay triangles
= Adaptation from Euclidean to hyperbolic needs:

3 and 4-point Full Steiner
Trees in a Hyperbolic model




Method: Adapting Smith et al.

Goes from local to global solution via Delaunay triangles
= Adaptation from Euclidean to hyperbolic needs:

3-points
System of algebraic equations




Method: Adapting Smith et al.

Goes from local to global solution via Delaunay triangles
= Adaptation from Euclidean to hyperbolic needs:

3-points
System of algebraic equations

4-points
Approximated recursive algorithm




Method: Solving the 3-point case with isoptic curves

In the 3-point case the Steiner point (if exists) is the locus where all segments of the triangle
AABC are seen under 120° (i.e., intersection of isoptic curves)

Euclidean Case (aka Fermat point) Hyperbolic Klein model
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Method: Solving the 3-point case with isoptic curves

In the 3-point case the Steiner point (if exists) is the locus where all segments of the triangle
AABC are seen under 120° (i.e., intersection of isoptic curves)

Euclidean Case (aka Fermat point) Hyperbolic Klein model
Solution | Solution
: = : B
Compute Fermat point of Solving a system of

triangle AABC algebraic equations!
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Method validation on synthetic data
sampled from different distributions
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Method validation on synthetic data
sampled from different distributions
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Method validation on synthetic data
sampled from different distributions

Application to hierarchy discovery on
real biological data
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s for validation on synthetic data




1) HyperSteiner leads to 2-3%
improvement over the MST in standard
scenarios, similarly to the Euclidean
case.
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1) HyperSteiner leads to 2-3%
improvement over the MST in standard
scenarios, similarly to the Euclidean
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1)

HyperSteiner
improvement over the MST in standard
scenarios, similarly to the Euclidean

leads

to

2-3%

case.
d=3 d=4
|P|/d 1 40 1 30

t

0.40 13484033 2524039 9.64+0.27 2.57+0.36
0.60 14594019 2.33+0.51 11.55+0.17 2.27+0.37
0.80 16.314+0.11 244+1.27 14.95+0.11 1.89+0.35
0.90 17.76 £0.07 3.16+2.42 18.02+£0.08 1.8140.95
0.95 18.9140.05 4474356 20.54+£0.06 2.1841.93
0.98 20.04+0.04 6.63+4.56 23.04+0.05 4.02+4.10
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: Results for validation on synthetic data

1) HyperSteiner leads to 2-3%
improvement over the MST in standard
scenarios, similarly to the Euclidean
case.

2) HyperSteiner  achieves higher
improvement over the MST than the
maximum theoretical improvement on the
Euclidean case (Gilbert-Pollak conjecture

~13.4%).

d =3 d=4
|P|/d 1 40 1 30

t

0.40 13.48 +£0.33 2.524+0.39 9.64+£0.27 2.57+0.36
0.60 14.59+0.19 2.334+0.51 11.55+0.17 2.27 +0.37
0.80 16.31 £0.11 244 +1.27 14.95+0.11 1.894+0.35
0.90 17.76 £0.07 3.16 22.42 18.02+0.08 1.814+0.95
0.95 1891 +0.05 4.47+3.56 20.544+0.06 2.18+1.93
0.98 20.04 +£0.04 6.63+4.56 23.04+0.05 4.02+4.10




Distance error

Whole Planaria dataset

Method NJ HyperSteiner MST
Distance error  0.17 0.18 0.19
CPU 12604 995 914
Missing data
— N 1754
0.195 - : :la)ég—erSteiner 150
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Percentage of removed data

Percentage of removed data

HyperSteiner:

1) Scales much better
than Neighbor Joining
to large datasets.

2) Performs better than
Minimum Spanning Tree.



Conclusion

We developed a method to compute a heuristic Steiner tree connecting points
in a hyperbolic space, with applications to hierarchy discovery in biology.

Questions?



