

HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees

A. García Castellanos*, A. A. Medbouhi*, G. L. Marchetti, E. J. Bekkers, D. Kragic

SIAM Symposium on
Algorithm Engineering
and Experiments

Steiner Minimal Trees

Problem: given a set of n points P in the plane,

Steiner Minimal Trees

Problem: given a set of n points P in the plane, find the set S of points and the tree with vertices P U S minimizing the total edge length.

Applications

SMTs are crucial for (optimal) network design.

Hardness and Heuristics

The problem of obtaining the *exact* SMT is **NP-Hard**

 \rightarrow

Obtain approximate solutions using heuristics

Hardness and Heuristics

The problem of obtaining the *exact* SMT is **NP-Hard**

 \rightarrow

Obtain approximate solutions using heuristics

The **algorithm by Smith et al.** computes *suboptimal* Steiner Minimal Trees by a *divide-and-conquer* approach:

- 1. Reducing the problem to a local one via the Delaunay triangulation
- 2. Concatenating local Full Steiner Trees (FSTs)

Non-Euclidean SMTs

The SMT problem can be defined on any Riemannian manifold. We focus on the hyperbolic space,

Non-Euclidean SMTs

The SMT problem can be defined on any Riemannian manifold. We focus on the hyperbolic space, since its exponential growth is suitable for representing hierarchical data.

Src: http://summergeometry.org/sgi2021/embedding-hierarchical-data-in-hyperbolic-geometry/

- Adapt the heuristic method for computing SMTs by Smith et al. to the hyperbolic space
- Apply the method to hierarchy discovery

Smith-Lie-Liebman algorithm

The **algorithm by Smith et al.** computes *suboptimal* Steiner Minimal Trees by a *divide-and-conquer* approach:

- 1. Reducing the problem to a local one via the Delaunay triangulation
- 2. Concatenating local Full Steiner Trees (FSTs)

It has O(n log(n)) computational complexity 🚀

Algorithm 1 SLL Algorithm

Input: Terminals $P \subset \mathbb{R}^2$.

- 1. Construct the Delaunay triangulation, DT(P).
- 2. Construct MST(P) (Kruskal algorithm) and simultaneously build a priority queue as follows:
 - 2.1. Mark all the triangles $\sigma \in DT(P)$ containing two edges of MST(P) and admitting an FST.
 - 2.2. Place the FSTs of marked triangles σ in a queue Q prioritized on $\rho(\sigma)$ (smaller first).
- 3. Add the FST of the 4-terminal subsets:
 - 3.1. For each marked triangle σ , find its adjacent triangles σ' such that σ and σ' contain three edges of the MST(P).
 - 3.2. Compute the FST $\sigma \cup \sigma'$ for each of the two possible topologies and add the minimal one to Q.
- 4. Convert Q to an ordered list and append to it the edges of MST(P), sorted in non-decreasing order.
- 5. Let T be an empty tree. An FST in Q is added to T if it does not create a cycle (greedy concatenation).

Output: T – a heuristic SMT of P.

SLL: Delaunay triangulation

Voronoi diagram

Delaunay triangulation

SLL: Minimum Spanning Tree

Delaunay triangulation

MST

SLL: Heuristic Steiner Minimal Tree

MST

SMT

Goes from local to global solution via Delaunay triangles \Rightarrow Adaptation from Euclidean to hyperbolic needs:

Goes from local to global solution via Delaunay triangles \Rightarrow Adaptation from Euclidean to hyperbolic needs:

Hyperbolic Voronoi Diagram

Hyperbolic Delaunay Triangulation 3 and 4-point Full Steiner Trees in a Hyperbolic model

Goes from local to global solution via Delaunay triangles \Rightarrow Adaptation from Euclidean to hyperbolic needs:

Hyperbolic Delaunay Triangulation 3 and 4-point Full Steiner Trees in a Hyperbolic model

Goes from local to global solution via Delaunay triangles \Rightarrow Adaptation from Euclidean to hyperbolic needs:

3 and 4-point Full Steiner Trees in a Hyperbolic model

Goes from local to global solution via Delaunay triangles \Rightarrow Adaptation from Euclidean to hyperbolic needs:

Goes from local to global solution via Delaunay triangles \Rightarrow Adaptation from Euclidean to hyperbolic needs:

Method: Solving the 3-point case with isoptic curves

In the 3-point case the Steiner point (if exists) is the locus where all segments of the triangle \triangle ABC are seen under 120° (*i.e., intersection of isoptic curves*)

Hyperbolic Klein model

Method: Solving the 3-point case with isoptic curves

In the 3-point case the Steiner point (if exists) is the locus where all segments of the triangle \triangle ABC are seen under 120° (*i.e., intersection of isoptic curves*)

Hyperbolic Klein model

Method: Solving the 3-point case with isoptic curves

In the 3-point case the Steiner point (if exists) is the locus where all segments of the triangle \triangle ABC are seen under 120° (*i.e., intersection of isoptic curves*)

Example

Steiner ratio

Application to hierarchy discovery on real biological data

Application to hierarchy discovery on real biological data

1) HyperSteiner leads to 2-3% improvement over the MST in standard scenarios, similarly to the Euclidean case.

t = 0.6t = 0.4t = 0.8t = 0.9t = 0.95t = 0.98 1) HyperSteiner leads to 2-3% improvement over the MST in standard scenarios, similarly to the Euclidean case.

	d = 3		d = 4	
P /d	1	40	1	30
0.40 0.60 0.80 0.90 0.95 0.98	$13.48 \pm 0.33 \\ 14.59 \pm 0.19 \\ 16.31 \pm 0.11 \\ 17.76 \pm 0.07 \\ 18.91 \pm 0.05 \\ 20.04 \pm 0.04 \\ 18.91 \pm 0.04 \\ 18.9$	$\begin{array}{c} 2.52 \pm 0.39 \\ 2.33 \pm 0.51 \\ 2.44 \pm 1.27 \\ 3.16 \pm 2.42 \\ 4.47 \pm 3.56 \\ 6.63 \pm 4.56 \end{array}$	$\begin{array}{c} 9.64 \pm 0.27 \\ 11.55 \pm 0.17 \\ 14.95 \pm 0.11 \\ 18.02 \pm 0.08 \\ 20.54 \pm 0.06 \\ 23.04 \pm 0.05 \end{array}$	$\begin{array}{c} 2.57 \pm 0.36 \\ 2.27 \pm 0.37 \\ 1.89 \pm 0.35 \\ 1.81 \pm 0.95 \\ 2.18 \pm 1.93 \\ 4.02 \pm 4.10 \end{array}$

1) HyperSteiner leads to 2-3% improvement over the MST in standard scenarios, similarly to the Euclidean case.

2) HyperSteiner achieves higher improvement over the MST than the maximum theoretical improvement on the Euclidean case (Gilbert-Pollak conjecture ~13.4%).

	d = 3		d = 4	
P /d	1	40	1	30
0.40	13.48 ± 0.33	2.52 ± 0.39	9.64 ± 0.27	2.57 ± 0.36
0.60 0.80	$14.59 \pm 0.19 \\ 16.31 \pm 0.11$	$2.33 \pm 0.51 \\ 2.44 \pm 1.27$	$11.55 \pm 0.17 \\ 14.95 \pm 0.11$	$2.27 \pm 0.37 \\ 1.89 \pm 0.35$
0.90	17.76 ± 0.07	3.16 ± 2.42	18.02 ± 0.08	1.81 ± 0.95
$\begin{array}{c} 0.95 \\ 0.98 \end{array}$	18.91 ± 0.05 20.04 ± 0.04	4.47 ± 3.56 6.63 ± 4.56	20.54 ± 0.06 23.04 ± 0.05	2.18 ± 1.93 4.02 ± 4.10

Results for cell age prediction on real data

Whole Planaria dataset

Method	NJ	HyperSteiner	MST
Distance error	0.17	0.18	0.19
CPU	12604	995	914

HyperSteiner:

1) Scales much better than Neighbor Joining to large datasets.

2) Performs better than Minimum Spanning Tree.

Conclusion

We developed a method to compute a heuristic Steiner tree connecting points in a hyperbolic space, with applications to hierarchy discovery in biology.

Questions?